4-Dimethylamino-2-methylazobenzene

sc-214234

Material Safety Data Sheet

Hazard Alert Code Key:

EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
4-Dimethylamino-2-methylazobenzene

STATEMENT OF HAZARDOUS NATURE

NFPA

CANADIAN WHMIS SYMBOLS

Section 2 - HAZARDS IDENTIFICATION

Synonyms
C15-H17-N3, C6H5NC6H3(CH3)N(CH3)2. "aniline, 4-(phenylazo)-N, N, 3-trimethyl-", "aniline, 4-(phenylazo)-N, N, 3-trimethyl-", "azobenzene, 4-dimethylamino-2-methyl-", "azobenzene, 4-dimethylamino-2-methyl-", "benzenamine, N, N, 3-trimethyl-4-(phenylazo)", "benzenamine, N, N, 3-trimethyl-4-(phenylazo)", 2-MEDAB, 2-MEDAB, 2-methyl-DAB, 2-methyl-DAB, "2-methyl-N, N-dimethyl-4-aminoazobenzene", "2-methyl-N, N-dimethyl-4-aminoazobenzene", 2-methyl-4-dimethylaminoazobenzene, 2-methyl-4-dimethylaminoazobenzene, "2, N, N-trimethyl-4-aminoazobenzene", "2, N, N-trimethyl-4-aminoazobenzene", "N, N, 3-trimethyl-4-(phenylazo)benzenamine", "N, N, 3-trimethyl-4-(phenylazo)benzenamine", 4-dimethylamino-2-methylazobenzene, 4-dimethylamino-2-methylazobenzene

PRODUCT USE
• Intermediate. Reagent
EMERGENCY OVERVIEW

RISK
Harmful if swallowed.
May cause SENSITIZATION by skin contact.
Limited evidence of a carcinogenic effect.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
• Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

EYE
• Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

SKIN
• Skin contact is not thought to produce harmful health effects (as classified using animal models). Systemic harm, however, has been identified following exposure of animals by at least one other route and the material may still produce health damage following entry through wounds, lesions or abrasions. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
• Open cuts, abraded or irritated skin should not be exposed to this material.
• Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
• The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified using animal models). Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
• Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS
• There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment. Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Exposure to the material may result in a possible risk of irreversible effects. The material may produce mutagenic effects in man. This concern is raised, generally, on the basis of appropriate studies with similar materials using mammalian somatic cells in vivo. Such findings are often supported by positive results from in vitro mutagenicity studies.

Azo dyes as a class are a concern for their potential induction of mutagenicity and carcinogenicity. Reductive cleavage or degradation into component aromatic amines is one of the mechanisms leading to the genotoxicity of azo dyes. The aromatic amines that arise from the azo reduction and cleavage of azo dyes are thought to be activated as mutagens through their N-oxidation by cytochrome P450 isozymes. The N-hydroxylarylamines that are formed may be further glucuronated (activated) or acetylated (inactivated), which may influence their mutagenicity. Under acidic pH, they form reactive nitrenium ions that can alkylate bases in DNA, particularly the nucleophilic centres in guanine. This mechanism is thought to contribute to the carcinogenicity of many azo dyes, and as a result, azo dyes should be assessed for toxicity and classified similarly to their component amines.

Many azo dyes (aromatic amines) have been found to be carcinogenic in laboratory animals, affecting the liver, urinary bladder and intestines. Specific toxicity effects in humans have not been established but some dyes are known to be mutagenic. Benzidine and its metabolic derivatives have been detected in the urine of workers exposed to Direct azo dyes. An epidemiological study of silk dyers and painters with multiple exposures to benzidine based and other dyes indicate a strong association with bladder cancer.

Not all azo dyes are genotoxic, only those dyes that contain either phenylenediamine or benzidine in the molecule would become mutagenic. Therefore, phenylenediamine and benzidine are the major mutagenic moieties of carcinogenic azo dyes. Many functional groups (i.e. NO2, CH3 and NH2) within the molecules of these amines affected their genotoxicites. Many aromatic amines are carcinogenic and/or mutagenic. This appears to involve bioactivation by various organs and/or bacterial intervention.

The simplest azo dyes, which raise concern, have an exocyclic amino-group that is the key to any carcinogenicity for it is this group which undergoes biochemical N-oxidation and further reaction to reactive electrophiles. The DNA adducts formed by covalent binding through activated nitrogen have been identified. However not all azo compounds possess this activity and delicate alterations to structure vary the potential of carcinogenicity / acid, reduces or eliminates the effect. Complex azo dyes consisting of more than one azo (N=N) linkage may be metabolised to produce complexed carcinogenic aromatic amines such as benzidine.
The carcinogenic aromatic amines are generally recognized to be bioactivated in two steps: N-hydroxylation catalyzed by cytochrome P450 enzymes to give N-hydroxyarylamines and subsequent acetyl-CoA-dependent O-acetylation. The N-acetoxy esters formed by acetylation of hydroxyamines are reactive electrophiles which give rise to covalent DNA-adduct probably via the loss of an active anion, which yields a nitrenium ion.

In the past, azo colorants based on benzidine, 3,3'-dichlorobenzidine, 3,3'-dimethylbenzidine (o-tolidine), and 3,3'-dimethoxybenzidine (o-dianisidine) have been synthesized in large amounts and numbers. Studies in exposed workers have demonstrated that the azoreduction of benzidine-based dyes occurs in man. The metabolic conversion of benzidine-, 3,3'-dimethylbenzidine- and 3,3'-dimethoxybenzidine-based dyes to their (carcinogenic) amine precursors in vivo is a general phenomenon that must be considered for each member of this class of chemicals.

Azo dyes containing phenylenediamine are mutagenic in certain assays most likely due to the formation of oxidized p-phenylenediamine. p-Phenylenediamine are oxidised by the liver microsomal enzymes (S9). Pure p-phenylenediamine is non-mutagenic but becomes mutagenic after it is oxidized. Modification of the moieties that can be metabolized to p-phenylenediamine by sulfonation, carboxylation or copper complexation eliminated the mutagenic responses.

Bioavailability of azo dyes also determines whether they are to be metabolically converted to carcinogens. As a majority of azo pigments are based on 3,3'-dichlorobenzidine, much of the available experimental data are focused on this group. Long-term animal carcinogenicity studies performed with pigments based on 3,3'-dichlorobenzidine did not show a carcinogenic effect. Hence, it is very unlikely that occupational exposure to insoluble azo pigments would be associated with a substantial risk of (bladder) cancer in man.

According to current EU regulations, azo dyes based on benzidine, 3,3'-dimethoxybenzidine and 3,3'-dimethylbenzidine have been classified as carcinogens of category 2 as "substances which should be regarded as if they are carcinogenic to man". This is not the case for 3,3'-dichlorobenzidine-based azo pigments.

It is also postulated that some of the aromatic amines metabolically produced from azo dyes may be responsible for the induction of autoimmune diseases such as lupus. This is probably due to the fact that lupus inducing drugs are amines in nature. They also have the similar metabolic activation pathways as the human bladder procarcinogens. The only difference between lupus inducing drugs and procarcinogens is that carcinogens interact with DNA to form covalent adducts which produce mutations, while lupus inducing drugs interact with DNA to provoke the immunoresponses.

Azo dyes are widely used in industry. A large amount of these dyes are discharged into streams and rivers, and they are considered as an environmental pollutant. Some of these compounds may accumulate into food chains and eventually reach the human body through ingestion. Intestinal microbiota and to a lesser extent, the liver enzymes, are responsible for the cleavage of azo dyes into aromatic amines. Some of human endogenous bacteria that contaminate bladder can metabolically activate aromatic amines that are produced from azo dyes (procarcinogens). The addition of the nitro-group to these aromatic amines would convert them into direct mutagens.

These findings may also explain, partly, the close relationships between chronic infection and cancer development. Skin bacteria are thought to be responsible for cleavage of certain azo dyes to produce carcinogens; of importance are dye-stuffs found in cosmetics, hair dyes, textiles and tattoo inks.

Several in vitro and in vivo studies suggest that certain azo dyes may be reductively cleaved when applied to the skin also under aerobic conditions. Results obtained with the various azo dyes suggest that reductive cleavage to aromatic amines has to be considered a significant phenomenon. It is generally thought that about 30% of the dye may be cleaved in this manner.

From the available literature, on this chemical class of azo dyes, it can be deduced that all azo dyes which are split into carcinogenic amines are possible carcinogens.

Both water-soluble and lipophilic azo dyes of this class have been shown experimentally to undergo cleavage to potential carcinogens.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>HAZARD RATINGS</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability:</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicity:</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact:</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Reactivity:</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chronic:</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

NAME: N,N-dimethyl-4-(phenylazo)-m-toluidine
CAS RN: 54-88-6
%: >98

Section 4 - FIRST AID MEASURES

- **SWALLOWED**
 - IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
 - Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
 - For advice, contact a Poisons Information Center or a doctor.
 - Urgent hospital treatment is likely to be needed.
• If conscious, give water to drink.
• INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

NOTE: Wear a protective glove when inducing vomiting by mechanical means.
• In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
• If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
• If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

EYE
• If this product comes in contact with the eyes:
 • Wash out immediately with fresh running water.
 • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 • If pain persists or recurs seek medical attention.
 • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN
• If skin contact occurs:
 • Immediately remove all contaminated clothing, including footwear
 • Flush skin and hair with running water (and soap if available).
 • Seek medical attention in event of irritation.

INHALED
• If dust is inhaled, remove from contaminated area.
• Encourage patient to blow nose to ensure clear passage of breathing.
• If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN
• Periodic medical surveillance should be carried out on persons in occupations exposed to the manufacture or bulk handling of the product and this should include hepatic function tests and urinalysis examination. [ILO Encyclopaedia].

Section 5 - FIRE FIGHTING MEASURES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapour Pressure (mmHG)</td>
<td>Negligible</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available.</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>Not available.</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available.</td>
</tr>
</tbody>
</table>

EXTINGUISHING MEDIA
• Foam.
• Dry chemical powder.
• BCF (where regulations permit).
• Carbon dioxide.
• Water spray or fog - Large fires only.

FIRE FIGHTING
• Alert Emergency Responders and tell them location and nature of hazard.
• Wear breathing apparatus plus protective gloves.
• Prevent, by any means available, spillage from entering drains or water course.
• Use water delivered as a fine spray to control fire and cool adjacent area.
• DO NOT approach containers suspected to be hot.
• Cool fire exposed containers with water spray from a protected location.
• If safe to do so, remove containers from path of fire.
• Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
• Combustible solid which burns but propagates flame with difficulty.
• Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
• Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
• Build-up of electrostatic charge may be prevented by bonding and grounding.
• Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion
Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.
May emit poisonous fumes.
May emit corrosive fumes.

FIRE INCOMPATIBILITY
• Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION
Glasses:
Chemical goggles.
Gloves:
Respirator:
Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
•
 ● Clean up waste regularly and abnormal spills immediately.
 ● Avoid breathing dust and contact with skin and eyes.
 ● Wear protective clothing, gloves, safety glasses and dust respirator.
 ● Use dry clean up procedures and avoid generating dust.
 ● Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
 ● Dampen with water to prevent dusting before sweeping.
 ● Place in suitable containers for disposal.

MAJOR SPILLS
• Moderate hazard.
 ● CAUTION: Advise personnel in area.
 ● Alert Emergency Responders and tell them location and nature of hazard.
 ● Control personal contact by wearing protective clothing.
 ● Prevent, by any means available, spillage from entering drains or water courses.
 ● Recover product wherever possible.
 ● IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
 ● ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
 ● If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)
AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.
AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.
AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING
•
 ● Avoid all personal contact, including inhalation.
 ● Wear protective clothing when risk of exposure occurs.
 ● Use in a well-ventilated area.
 ● Prevent concentration in hollows and sumps.
 ● DO NOT enter confined spaces until atmosphere has been checked.
 ● DO NOT allow material to contact humans, exposed food or food utensils.
 ● Avoid contact with incompatible materials.
 ● When handling, DO NOT eat, drink or smoke.
• Keep containers securely sealed when not in use.
• Avoid physical damage to containers.
• Always wash hands with soap and water after handling.
• Work clothes should be laundered separately.
• Launder contaminated clothing before re-use.
• Use good occupational work practice.
• Observe manufacturer’s storing and handling recommendations.
• Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

• Do NOT cut, drill, grind or weld such containers.
• In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS
• Polyethylene or polypropylene container.
• Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS
• Store in original containers.
• Keep containers securely sealed.
• Store in a cool, dry, well-ventilated area.
• Store away from incompatible materials and foodstuff containers.
• Protect containers against physical damage and check regularly for leaks.
• Observe manufacturer’s storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

![Safety Symbols]

X: Must not be stored together
O: May be stored together with specific precautions
+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Peak ppm</th>
<th>Peak mg/m³</th>
<th>TWA F/CC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>US - Oregon Permissible Exposure Limits (Z3)</td>
<td>N,N-dimethyl-4-(phenylazo)-m-toluidine (Inert or Nuisance Dust: (d) Total dust)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z3</td>
<td>N,N-dimethyl-4-(phenylazo)-m-toluidine (Inert or Nuisance Dust: (d) Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z3</td>
<td>N,N-dimethyl-4-(phenylazo)-m-toluidine (Inert or Nuisance Dust: (d) Total dust)</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Hawaii Air Contaminant Limits</td>
<td>N,N-dimethyl-4-(phenylazo)-m-toluidine (Particulates not other wise regulated - Total dust)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Hawaii Air Contaminant Limits</td>
<td>N,N-dimethyl-4-(phenylazo)-m-toluidine (Particulates not other wise regulated - Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Oregon Permissible Exposure Limits (Z3)</td>
<td>N,N-dimethyl-4-(phenylazo)-m-toluidine (Inert or Nuisance Dust: (d) Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>
MATERIAL DATA

N,N-DIMETHYL-4-(PHENYLAZO)-M-TOLUIDINE:

- It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.
- At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practicably possible and occupational exposure must be kept to a minimum.
- NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET

- NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
 - frequency and duration of contact,
 - chemical resistance of glove material,
 - glove thickness and dexterity
- Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
 - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
 - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.
- Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
- Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.
 - polychloroprene
 - nitrile rubber
 - butyl rubber
 - fluorocautchouc
 - polyvinyl chloride
- Gloves should be examined for wear and/ or degradation constantly.

OTHER

- Overallis.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
Eye wash unit.

Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.

The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).

Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.

Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.

Use approved positive flow mask if significant quantities of dust becomes airborne.

Try to avoid creating dust conditions.

RESPIRATOR

<table>
<thead>
<tr>
<th>Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x PEL</td>
<td>P1</td>
<td>-</td>
<td>PAPR-P1</td>
</tr>
<tr>
<td></td>
<td>Air-line*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>50 x PEL</td>
<td>Air-line**</td>
<td>P2</td>
<td>PAPR-P2</td>
</tr>
<tr>
<td>100 x PEL</td>
<td>-</td>
<td>P3</td>
<td>-</td>
</tr>
<tr>
<td>100+ x PEL</td>
<td>-</td>
<td>Air-line*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Air-line**</td>
<td></td>
<td>PAPR-P3</td>
</tr>
</tbody>
</table>

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

- Class 1 low to medium absorption capacity filters.
- Class 2 medium absorption capacity filters.
- Class 3 high absorption capacity filters.
- PAPR Powered Air Purifying Respirator (positive pressure) cartridge.
- Type A for use against certain organic gases and vapors.
- Type AX for use against low boiling point organic compounds (less than 65°C).
- Type B for use against certain inorganic gases and other acid gases and vapors.
- Type E for use against sulfur dioxide and other acid gases and vapors.
- Type K for use against ammonia and organic ammonia derivatives

CLASS P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

CLASS P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

CLASS P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply.

Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered.

 Such protection might consist of:

 (a): particle dust respirators, if necessary, combined with an absorption cartridge;
 (b): filter respirators with absorption cartridge or canister of the right type;
 (c): fresh-air hoods or masks

- Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

Type of Contaminant:

<table>
<thead>
<tr>
<th>Air Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2.5 m/s (200-500 f/min.)</td>
</tr>
<tr>
<td>2.5-10 m/s (500-2000 f/min.)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:
Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid. Does not mix with water.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Divided solid</td>
<td></td>
</tr>
<tr>
<td>Melting Range (°F)</td>
<td>152.6-156.2</td>
<td></td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>Not available</td>
<td></td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>Not available</td>
<td></td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>Not available</td>
<td></td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>Not available</td>
<td></td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available</td>
<td></td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
<td></td>
</tr>
<tr>
<td>VOLATILE COMPONENT (%vol)</td>
<td>Negligible</td>
<td></td>
</tr>
<tr>
<td>APPEARANCE</td>
<td>Red-orange crystalline solid; does not mix well with water.</td>
<td></td>
</tr>
</tbody>
</table>

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

- Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

N,N-dimethyl-4-(phenylazo)-m-toluidine

TOXICITY AND IRRITATION

- Unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOXICITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intraperitoneal (mouse) LD50</td>
<td>345 mg/kg</td>
<td></td>
</tr>
<tr>
<td>IRRITATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact allergies</td>
<td>Nil Reported</td>
<td></td>
</tr>
</tbody>
</table>

- Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quinte's edema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitization potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitizing substance which is widely distributed can be a more important allergen than one with stronger sensitizing potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.
If the dye is not broken during rigors of biological waste treatment, it is unlikely to degrade rapidly. Hydrolysis does not seem to be an important degradation route, except for reactive dyes, which are hydrolysed rapidly in aqueous solution. The total mineralisation of widely dispersed trace amounts may be underestimated. Furthermore, hydrolysis may be of some importance, whereas photolysis does not play a dominant role in the environmental fate of dyes.

The content of a specific dye lies in the range of 10 to 98%. The aromatic amines containing moieties of anilines, extended anilines and fused ring amines are components of the majority of the industrially important azo dyes. Reduction of the azo group, either by intestinal bacteria or by azo reductases of the liver and extra-hepatic tissues can cause benzidine-based aromatic amines to be released. Such breakdown products have been detected in animal experiments as well as in man (urine). Mutagenicity, which has been observed with numerous azo colourants in in vitro test systems, and the carcinogenicity in animal experiments are attributed to the release of amines and their subsequent metabolic activation. There are now epidemiological indications that occupational exposure to benzidine-based azo colourants can increase the incidence of bladder carcinoma. The acute toxicity of azo dyes is low. However, potential health effects are recognised. Despite a very broad field of application and exposure, sensitising properties of azo dyes have been identified in relatively few reports. Red azoic dyes have been linked to allergic contact dermatitis in heavily exposed workers. Furthermore, textiles coloured with disperse azo dyes have caused allergic dermatitis in a few cases.

NOTE: Substance has been shown to be mutagenic in at least one assay, or belongs to a family of chemicals producing damage or change to cellular DNA. Respiratory tract and liver tumours recorded. Neoplastic by RTECS criteria.

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

N,N-DIMETHYL-4-(PHENYLazo)-M-TOLUIDINE:
- Biodegradation of azo dyes can occur in both aerobic and anaerobic environments. In both cases, the initial step in the biodegradation is the oxidative cleavage of the azo-bond. Under aerobic conditions the initial step of cleavage of the azo-bond is typically followed by photolysis and ring opening of the aromatic intermediates. The electron-withdrawal character of azo-groups generates electron deficiency and thus makes the compounds less susceptible to oxidative catabolism. As a consequence, many of these chemicals tend to persist under aerobic environmental conditions. Aerobic degradation of azo dyes is not expected as oxygen is often an inhibitor of azo reduction. Biodegradation of these dyes by aerobic sludge is reported to be insignificant as greater than 50% of the dye remains unchanged or is only slightly modified.
- Reduction of azo dyes occurs primarily under anaerobic conditions through cleavage of the azo linkage. While azo dyes are generally stable under aerobic conditions, they are susceptible to reductive degradation under the anaerobic conditions characteristic of sediment. A possible pathway of azo dye degradation is azo-reductase under anaerobic conditions followed by mineralisation under aerobic conditions, with the resultant end products being NH3, CO2 and H2O.
- The great majority of azo dyes are water soluble and they colour different substrates by becoming physically attached. The attachment may be due to adsorption, absorption or mechanical adherence. Most of the commercial available azo dyes are in fact formulations of several components in order to improve the technical properties of the dyeing process. The content of a specific dye lies in the range of 10 to 98%.
- Soluble azo dyes, which are likely to remain in solution and therefore are unlikely to adsorb to sediment or sludge, the above anaerobic pathway is unlikely to occur. An important natural abiotic degradation mechanism is photolysis and hydrolysis as a function of pH in the range of pH 4-9. The evidence of the role of hydrolysis in degradation of azo dyes is not conclusive. Even though the dyes have absorption maxima in the range of visible and UV-light, photo-reduction does not play a dominant role in the environmental fate of dyes, although its contribution to the total mineralisation of widely dispersed trace amounts may be underestimated. Furthermore, hydrolysis seems not to be an important degradation pathway either, except for reactive dyes, which are hydrolysed rapidly in aqueous solution. For the metabolites, photolysis may be of some importance, whereas hydrolysis does not seem to be an important degradation route.
- If the dye is not broken during rigors of biological waste treatment, it is unlikely to degrade rapidly in the less severe conditions of the...
environment. The reductive cleavage of the azo-bond is the major degradation pathway for azo dyes. Photo-reduction of azo dyes to hydrazines and amines is possible, but it is likely to be very slow, except in oxygen-poor water. The stability of the dyes to visible and UV-light is very high, and therefore only slow degradation has been shown. The photo-stability of azo dyestuffs is high in pure water but in the presence of natural humic materials, the photo decomposition is strongly accelerated, probably through oxidation by single oxygen or oxy-radicals.

Although azo dyes are generally not readily or inherently biodegradable, bioaccumulation or adsorption to sediment is not expected due to their, generally, low partition coefficient.

Certain of the Acid and Basic azo dyes are acutely toxic to aquatic organisms (fish, crustaceans, algae and bacteria); this is also true of some Direct dyes. Reactive dyes generally have very high effect concentration levels (>100 mg/l) and are not considered to be toxic to aquatic organisms. The non-ionic (Disperse and Solvent) dyes are toxic or potentially toxic. Solvent dyes may even be acutely toxic to aquatic organisms. The Mordant dyes (nonionics) generally do not exhibit any toxicity at levels below 100 mg/l.

- DO NOT discharge into sewer or waterways.

Ecotoxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
<th>Bioaccumulation</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>N,N-dimethyl-4-(phenylazo)-m-toluidine</td>
<td>HIGH</td>
<td>LOW</td>
<td>MED</td>
<td></td>
</tr>
</tbody>
</table>

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

- Puncture containers to prevent re-use and bury at an authorized landfill.
- Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

N,N-dimethyl-4-(phenylazo)-m-toluidine (CAS: 54-88-6) is found on the following regulatory lists:

- "US - Hawaii Air Contaminant Limits"
- "US - Oregon Permissible Exposure Limits (Z3)"
- "US OSHA Permissible Exposure Levels (PELs) - Table Z3"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Cumulative effects may result following exposure*.
- Exposure may produce irreversible effects*.

* (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent
review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Apr-25-2008
Print Date: Jun-10-2010