
Disperse Blue 1

Company: Santa Cruz Biotechnology, Inc. Address: 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305 Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

Colourant. Should no longer be used in textiles because of potential sentising potential. Hair-dye Synthetic

SYNONYMS

C14-H12-N4-O2, "anthraquinone, 1, 4, 5, 8-tetramino-", "anthraquinone, 1, 4, 5, 8-tetramino-", "1, 4, 5, 8-tetraminoanthraquinone", "1, 4, 5, 8-tetraminoanthraquinone", "1, 4, 5, 8-tetraminoanthraquinone", "C.I. 64500", "C.I. Solvent Blue 18", "Acetate Blue G", "Acetoquinone Blue L", "Acetoquinone Blue R", "Acetylon Fast Blue G", "Amacel Blue GG", "Amacel Pure Blue B", "Artisil Blue SAP", "Brasilazet Blue GR", "Celanthrene Pure Blue BRS", "Celliton Blue BB-CF", "Celliton Blue Extra", "Celliton Blue G", "Cilla Blue Extra", "Diacelliton Fast Blue R", "Nacetale Blue G", "Fenacet Blue G", "Grasol Blue 2GS", "Kayalon Fast Blue BR", "Micton Fast Blue EB", "Nacelan Blue G", NCI-C54900, "Neosetile Blue EB", "Nyloquinone Blue 2J", "Oracet Sapphire blue G", "Perliton Blue B", "Serinyl Blue 2G", "Serinyl Blue 3GN", "Setacyl Blue 2GS", "Supracet Brilliant Blue 2GN", "Supracet Deep Blue R"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW RISK Irritating to skin. Risk of serious damage to eyes. May cause CANCER. May cause SENSITIZATION by skin contact.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

Accidental ingestion of the material may be damaging to the health of the individual.

The substance and/or its metabolites may bind to hemoglobin inhibiting normal uptake of oxygen. This condition, known as "methemoglobinemia", is a form of oxygen starvation (anoxia).

Symptoms include cyanosis (a bluish discoloration skin and mucous membranes) and breathing difficulties. Symptoms may not be evident until several hours after exposure.

At about 15% concentration of blood methemoglobin there is observable cyanosis of the lips, nose and earlobes. Symptoms may be absent although euphoria, flushed face and headache are commonly experienced. At 25-40%, cyanosis is marked but little disability occurs other than that produced on physical exertion. At 40-60%, symptoms include weakness, dizziness, lightheadedness, increasingly severe headache, ataxia, rapid shallow respiration, drowsiness, nausea, vomiting, confusion, lethargy and stupor. Above 60% symptoms include dyspnea, respiratory depression, tachycardia or bradycardia, and convulsions. Levels exceeding 70% may be fatal.

EYE

If applied to the eyes, this material causes severe eye damage.

SKIN

- This material can cause inflammation of the skin oncontact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
 Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
- Open cuts, abraded or irritated skin should not be exposed to this material.

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified using animal models). Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population.

There is ample evidence that this material can be regarded as being able to cause cancer in humans based on experiments and other information.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

NTP studies of nitro- and amino-anthraquinones, have demonstrated that each compound tested

has some activity as a mutagen. Most compounds of this class that have been the subjects of two-year studies have also been found to be carcinogenic in one or more species. Sites of tumor development include the urinary bladder in rats and the liver of both rats and mice.

Disperse dyes are lipophilic substances which dissolve in chemical fibre. For technical reasons, only small molecules with a required water solubility of approximately 30 mg/l are suitable. Additional organic solvents (dye accelerators, carriers) are used in the dyeing process. If this dyeing is not done in accordance with state of the art, e.g. over-dying, wrong textile substrate or incomplete removal of the carriers, there may be higher exposure to the dyes and carriers when wearing garments dyed in this way. Given their properties (small molecular size, high lipophilicity) and the fact that disperse dyes and carriers are lipophilic substances, some of them are easily absorbed through the skin which means that health concerns can't be ruled out.

The majority of sensitising dyes, present in clothes, practically all belong to the group of disperse dyes, which has been developed for use on synthetic fibres. The explanation is probably that the attachment of molecules from disperse dyes is weak, as they are more easily available for skin contact. In Germany, disperse azo dyes like Disperse Blue 1, 35, 106 and 124, Disperse Yellow 3, Disperse Orange 3, 37, 76 and Disperse Red 1 have been associated with contact dermatitis, resulting from exposure to textiles coloured with these dyes. In most cases the dermatitis resolved, once the sensitising "textile" had been discarded. These dyes are no longer recommended for colouring of textiles, which come into contact with the skin. Most arylamines are powerful poisons to the blood-making system. High chronic doses cause congestion of the spleen and

tumor formation.

Some anthraquinone (also known as anthracenedione) dyes are carcinogenic while others are positive allergens which cause hypersensitivity responses in unsensitised humans or cause or cause immunotoxic responses. Some of these dyes cause dermatitis whilst others produce slight teratogenic effects when administered intraperitoneally to pregnant mice. Information on the neurotoxic effects and metabolism on most members of this class of dyes is missing. Anthraquinones are classified with a large number of other quinone molecules that can be derived from aromatic molecules

such as benzene, naphthalene, and anthracene. Reactive oxygen species generated by metabolism of a variety of quinones may be associated with DNA damage or activation of signaling pathways involved in initiation, promotion, and progression of carcinogenesis. A high percentage (36/80) of phenolic anthraquinones have been reported to be mutagenic in Salmonella.

Quinone molecules can be reduced to a relatively stable hydroquinone, which usually is not associated with oxidative stress, or they may be reduced in a one-electron reduction to semiquinone free radicals that give rise to superoxide anions, hydrogen peroxide, and other reactive oxygen species Quinones may be produced from benzene, polycyclic aromatic hydrocarbons, estrogens, and catecholamines and give rise to reactive oxygen species that can damage DNA and other cellular macromolecules and activate signaling pathways. These molecular events may be associated with the initiation, promotion, and progression of carcinogenesis.

Disperse Blue 1 was a carcinogen in both sexes of F344/N rats; the findings in B6C3F1 mice were equivocal. Clear evidence of carcinogenicity in the urinary bladder of F344/N rats was evidenced

by increased incidences of transitional cell neoplasms, leiomyomas or leiomyosarcomas, and squamous cell neoplasms (NTP 1986).

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

Min

Section 4 - FIRST AID MEASURES

SWALLOWED

- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.

EYE

- If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- · Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes.
- · Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

If skin contact occurs:

- · Immediately remove all contaminated clothing, including footwear
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

- •
- If dust is inhaled, remove from contaminated area.
- Encourage patient to blow nose to ensure clear passage of breathing.
- If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN

- The material may induce methemoglobinemia following exposure.
- Initial attention should be directed at oxygen delivery and assisted ventilation if necessary. Hyperbaric oxygen has not demonstrated substantial benefits.
- Hypotension should respond to Trendelenburg's position and intravenous fluids; otherwise dopamine may be needed.
- Symptomatic patients with methemoglobin levels over 30% should receive methylene blue. (Cyanosis, alone, is not an indication for treatment). The usual dose is 1-2 mg/kg of a 1% solution (10 mg/ml) IV over 50 minutes; repeat, using the same dose, if symptoms of hypoxia fail to subside within 1 hour.

BIOLOGICAL EXPOSURE INDEX - BEI These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Determinant	Index	Sampling Time	Comment	
1. Methemoglobin in blood	1.5% of hemoglobin	During or end of shift	B, NS, SQ	
B: Background levels occur in specimens collected from subjects NOT exposed				

NS: Non-specific determinant; also observed after exposure to other materials

SQ: Semi-quantitative determinant - Interpretation may be ambiguous; should be used as a screening test or confirmatory test.

Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG):	Negligible
Upper Explosive Limit (%):	Not available.
Specific Gravity (water=1):	Not available
Lower Explosive Limit (%)	Not available

EXTINGUISHING MEDIA

- •____
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.Water spray or fog Large fires only.

FIRE FIGHTING

- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- · Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

Equipment should be thoroughly decontaminated after use. GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- .
- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive
 mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the
 fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- · Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes. May emit corrosive fumes.

FIRE INCOMPATIBILITY

Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses: Chemical goggles. Gloves: Respirator: Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- •
- · Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- Place in suitable containers for disposal.

MAJOR SPILLS

- .
- · Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by all means available, spillage from entering drains or water courses.
- Consider evacuation (or protect in place).
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Water spray or fog may be used to disperse / absorb vapour.
- · Contain or absorb spill with sand, earth or vermiculite.
- · Collect recoverable product into labelled containers for recycling.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could

experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

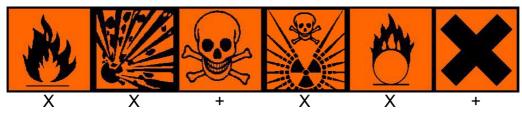
Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- - Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- · Avoid physical damage to containers.
- · Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- · Launder contaminated clothing before re-use.
- Use good occupational work practice.
- · Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.


RECOMMENDED STORAGE METHODS

- Polyethylene or polypropylene container.
- · Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- - Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

X: Must not be stored together

O: May be stored together with specific preventions

+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA mg/m³		Peak mg/m³	TWA F/CC	Notes
US - Oregon Permissible Exposure Limits (Z3)	C.I. Disperse Blue 1 (Inert or Nuisance Dust: (d) Total dust)	10				*
US OSHA Permissible Exposure Levels (PELs) - Table Z3	C.I. Disperse Blue 1 (Inert or Nuisance Dust: (d) Respirable fraction)	5				
US OSHA Permissible Exposure Levels (PELs) - Table Z3	C.I. Disperse Blue 1 (Inert or Nuisance Dust: (d) Total dust)	15				
US - Hawaii Air Contaminant Limits	C.I. Disperse Blue 1 (Particulates not other wise regulated - Total dust)	10				
US - Hawaii Air Contaminant Limits	C.I. Disperse Blue 1 (Particulates not other wise regulated - Respirable fraction)	5				
119 - Oragon Parmissihla	C.I. Disperse Blue 1 (Inert or					

Exposure Limits (Z3)	Nuisance Dust: (d) Respirable fraction)	5 *
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	C.I. Disperse Blue 1 (Particulates not otherwise regulated Respirable fraction)	5
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	C.I. Disperse Blue 1 (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)	5
US - Michigan Exposure Limits for Air Contaminants	C.I. Disperse Blue 1 (Particulates not otherwise regulated, Respirable dust)	5

MATERIAL DATA

C.I. DISPERSE BLUE 1:

■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

PERSONAL PROTECTION

Consult your EHS staff for recommendations **EYE**

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET

■ NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and

dexterity

- Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- · Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- Employees working with confirmed human carcinogens should be provided with, and be required to wear, clean, full body protective clothing (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area.
- Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filter-type respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted.
- Emergency deluge showers and eyewash fountains, supplied with potable water, should be located near, within sight of, and on the same level with locations where direct exposure is likely.
- Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such impervious containers must be identified with suitable labels. For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood.
- Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. •
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory . These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium. The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

- Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area.
- Work should be undertaken in an isolated system such as a "glove-box". Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system.
- Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens are contained within.
- Open-vessel systems are prohibited.
- Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the operation.
- Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless decontaminated. Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local exhaust system.
- For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing

protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.

- Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas).
- Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air.
- Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 150 feet/ min. with a minimum of 125 feet/ min. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and arms, be disallowed.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Divided solid	Molecular Weight	268.28
Not available	Viscosity	Not Applicable
Not available	Solubility in water (g/L)	Partly miscible
Not available	pH (1% solution)	Not applicable
Not available.	pH (as supplied)	Not applicable
Not available	Vapour Pressure (mmHG)	Negligible
Not available.	Specific Gravity (water=1)	Not available
Not available	Relative Vapor Density (air=1)	>1
Negligible	Evaporation Rate	Not applicable
	Not available Not available Not available Not available. Not available Not available. Not available.	Not availableViscosityNot availableSolubility in water (g/L)Not availablepH (1% solution)Not available.pH (as supplied)Not availableVapour Pressure (mmHG)Not available.Specific Gravity (water=1)Not availableRelative Vapor Density (air=1)

APPEARANCE

Black powder; does not mix well with water. Disperse Blue 1, an anthraquinone dye, is a blue-black microcrystalline powder containing approximately 50% 1,4,5,8- tetraaminoanthraquinone, 30% other compounds structurally related to 1,4,5,8tetraaminoanthraquinone, and 20% water. It is soluble in acetone, ethanol, and Cellosolve; slightly soluble in benzene and linseed oil; and slightly soluble in water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

- Many arylamines (aromatic amines such as aniline, N-ethylaniline, o-toluidine, xylidine etc. and their mixtures) are hypergolic (ignite spontaneously) with red fuming nitric acid. When the amines are dissolved in triethylamine, ignition occurs at -60 deg. C. or less.
- Various metal oxides and their salts may promote ignition of amine-red fuming nitric acid systems. Soluble materials such as copper(I) oxide, ammonium metavanadate are effective; insoluble materials such as copper(II) oxide, iron(II) oxide, potassium dichromate are also effective
- Avoid oxidizing agents, acids, acid chlorides, acid anhydrides.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

C.I. Disperse Blue 1

TOXICITY AND IRRITATION

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's edema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitization potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitizing substance which is widely distributed can be a more important allergen than one with stronger sensitizing potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. No significant acute toxicological data identified in literature search.

WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans.

Tenth Annual Report on Carcinogens: Substance anticipated to be Carcinogen [National Toxicology Program: U.S. Dep. of Health & Human Services 2002].

Data on the genotoxicity of Disperse Blue 1 indicate that it induced a weak positive response in Salmonella typhimurium, DNA damage (sister chromatid exchanges) and chromosomal aberrations in Chinese hamster ovary cells, tk gene mutations in mouse lymphoma L5178Y cells, and morphological transformation in Balb/c 3T3 mouse cells.

Data are available to suggest that transitional cell and squamous cell tumors induced by Disperse Blue 1 in the urinary bladder would not occur in humans exposed to amounts of Disperse Blue 1 insufficient to also cause bladder calculi. However, compelling data that demonstrate a causal relationship between urinary bladder calculi and leiomyomas and leiomyosarcomas have not been sufficiently developed to contradict other evidence that Disperse Blue 1 is reasonably anticipated to be a human

carcinogen.

CARCINOGEN

Disperse Blue 1	International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs	Group	2B
DISPERSE BLUE 1	US Environmental Defense Scorecard Recognized Carcinogens	Reference(s)	P65
DISPERSE BLUE 1	US Environmental Defense Scorecard Suspected Carcinogens	Reference(s)	P65

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

C.I. DISPERSE BLUE 1:

Aromatic amines (arylamines), particularly primary aromatic amines, covalently and irreversibly bind to humic substances present in most natural waters.

All metabolites with moieties of: anilines, benzidines and toluidines are of environmental concern. Anilines and benzidines are both acutely toxic and toxic depending on the specific aquatic species (except algae). Toluidines represent a similar concern, It has been speculated that aqueous solutions of aromatic amines can be oxidised by organic radicals, but there are no actual data on reaction rates. Based on a study of reaction rate data for these compounds an estimate of the half-life of aromatic amines in water is approximately 100 days, assuming a peroxy radical concentration of 10-10 mole/L in sunlit, oxygenated water.

for disperse dyes:

Environmental fate:

Disperse dyes have low water solubility, high Kow (e.g. Disperse Blue log Kow=3630). and hydrolytic stability - it is unlikely that significant quantities will be absorbed to the sludge in a sewage treatment plant. Generally they are not readily biodegradable although the are likely to be inherently biodegradable. Products produced by biodegradation may be polar.

These dyes are basically characterised as non-ionic or neutral dyes, and thereby hydrophobic in character. Thus they have a significant potential to adsorb sediments and bioconcentrate. Disperse dyes are further highly lipophilic. Some of the disperse dyes have vapour pressures high enough for application from the vapour phase. Furthermore, disperse dyes are believed to dye fabrics by the same mechanism by which hydrophobic pollutants adsorb onto sediments, and the equilibrium can be described by a partition coefficient.

The molecular size of the azo dyes, especially solvent and disperse dyes, may reduce the rate and probability of biodegradation. This is due to limited uptake; substituents may also influence the degradation rate. When the aromatic rings of the neutral dyes had substituted hydroxyl, amino, acetamido or nitro groups, the biodegradation/ mineralisation was greater than by those with unsubstituted rings.

In principle, the solvent and disperse dyes have the potential to be volatile, but as they are large, complex molecules they can be expected to have low vapour pressures. Volatilisation is unlikely for uncharged dyes because that the escaping tendency (fugacity) which drives volatilisation, is also the driving force behind both sorption and bioconcentration.

The estimated log BCFs for the non-ionic dyes, i.e. disperse and solvent, indicate a potential risk of bioaccumulation. However these values are generally too high when measured experimentally. Therefore, the risk of bioaccumulation of the non-ionic azo dyes must be further validated especially in view of their large molecular sizes.

Many dyes are visible in water at concentrations as low as 1 mg/l. Textile-processing waste waters, typically with a dye content in the range 10- 200 mg /l are therefore usually highly coloured and discharge in open waters presents an aesthetic problem. As dyes are designed to be chemically and photolytically stable, they are highly persistent in natural environments. It is thus unlikely that they, in general, will give positive results in short-term tests for aerobic biodegradability. The release of dyes may therefore present an ecotoxic hazard and introduces the potential danger of bioaccumulation that may eventually affect man by transport through the food chain

Ecotoxicity:

Indications are that the non-ionic (disperse, mordant and solvent) dyes are toxic and potentially toxic to aquatic organisms.

Algae are generally susceptible to dyes, but the inhibitory effect is thought to be related to light inhibition at high dye concentrations, rather than a direct inhibitory effect of the dyes. This effect may account for up to 50% of the inhibition observed. Virtually all dyes from all chemically distinct groups are prone to fungal oxidation but there are large differences between fungal species with respect to their catalysing power and dye selectivity. A clear relationship between dye structure and fungal dye biodegradability has not been established. Fungal degradation of aromatic structures is a secondary metabolic event that starts when nutrients (C, N and S) become limiting. Therefore, while the enzymes are optimally expressed under starving conditions, supplementation of energy substrates and nutrients are necessary for propagation of the cultures. The effects of the substitutional pattern of the dyes are inconclusive, but it has been suggested that introduction of the

The effects of the substitutional pattern of the dyes are inconclusive, but it has been suggested that introduction of the functional groups; methyl, nitro, sulfo or acid, weakens the inhibition of bacteria, whereas introduction of chlorine and bromine strengthens the inhibition.

DO NOT discharge into sewer or waterways.

Ecotoxicity

IngredientPersistence: Water/SoilPersistence: AirBioaccumulationC.I. Disperse Blue 1HIGHLOW

Mobility MED

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change

in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- · Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

C.I. Disperse Blue 1 (CAS: 2475-45-8) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)", "International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs", "International Chemical Secretariat (ChemSec) REACH SIN* List (*Substitute It Now!) 1.0", "US - California Air Toxics ""Hot Spots"" List (Assembly Bill 2588) Substances for which production, use or other presence must be reported", "US - California Occupational Safety and Health Regulations (CAL/OSHA) - Hazardous Substances List", "US - California Proposition 65 - Carcinogens", "US - California Proposition 65 - No Significant Risk Levels (NSRLs) for Carcinogens", "US - Maine Chemicals of High Concern List", "US Cosmetic Ingredient Review (CIR) Cosmetic ingredients found safe, with qualifications", "US National Toxicology Program (NTP) 11th Report Part B. Reasonably Anticipated to be a Human Carcinogen", "US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Ingestion may produce health damage*.
- Cumulative effects may result following exposure*.
- * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

• The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Jun-21-2008 Print Date:Apr-21-2010