Linseed (flaxseed) oil

sc-215251

Material Safety Data Sheet

Hazard Alert Code Key:
- **EXTREME**
- **HIGH**
- **MODERATE**
- **LOW**

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Linseed (flaxseed) oil

STATEMENT OF HAZARDOUS NATURE

NFPA

SUPPLIER
Company: Santa Cruz Biotechnology, Inc.
2145 Delaware Ave
Santa Cruz, CA 95060
Telephone: 800.457.3801 or 831.457.3800
Emergency Tel: CHEMWATCH: From within the US and Canada:
877-715-9305
Emergency Tel: From outside the US and Canada: +800 2436 2255
(1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE
Drying oils are characterized by high levels of fatty acids. One common measure of the siccative (drying) property of oils is iodine number. Oils with an iodine number greater than 130 are considered drying, those with an iodine number of 115-130 are semi-drying oils, and those with an iodine number of less than 115 are non-drying oils. The "drying," "hardening," or, more properly, "curing" of oils is the result of an exothermic reaction in the form of autoxidation. Oxygen attacks the hydrocarbon chain, touching off a series of addition reactions. As a result, the oil forms long, chain-like vast polymer network molecules, resulting in a vast polymer network. Over time, this network may undergo further change. Certain functional groups in the networks become ionised and the network transitions from a system held together by nonpolar covalent bonds to one governed by the ionic forces between these functional groups and the metal ions present in the paint pigment. In oil autoxidation, oxygen attacks a hydrocarbon chain, often at the site of an allylic hydrogen (a hydrogen on a carbon atom adjacent to a double bond). This produces, a free radical a substance with an unpaired electron which makes it highly reactive. A series of addition reactions ensues. Each step produces additional free radicals, which then engage in further polymerization. The process finally terminates when free radicals collide, combining their unpaired electrons to form a new bond. The polymerisation stage occurs over a period of days to weeks, and renders the film dry to the touch. Component of paints, coatings, varnishes, oil cloth, putty, printing inks, core oils, caulking, alkyd resins.

SYNONYMS

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAMMABILITY</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>HEALTH HAZARD</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>INSTABILITY</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

1 of 12
concentration were observed. A trade mixture containing an unspecified concentration of glyceryl dibehenate did not induce skin irritation in a single insult patch test, but mild skin irritation reactions to a formulation containing the same concentration were observed. A trade mixture containing an unspecified concentration of glyceryl dibehenate did not induce irritation or allergic sensitization in animal or human tests. The material is not thought to be harmful by ingestion. It is not thought to cause respiratory irritation. The material is not a known respiratory irritant, and it is not thought to damage the respiratory tract following inhalation.

EMERGENCY OVERVIEW

RISK

ACUTE HEALTH EFFECTS

SWALLOWED
- The material has NOT been classified as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, unintentional ingestion is not thought to be cause for concern.

EYE
- Although the liquid is not thought to be an irritant, direct contact with the eye may produce transient discomfort characterized by tearing or conjunctival redness (as with windburn).

SKIN
- Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
- There is some evidence to suggest that the material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterized by redness, swelling and blistering.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
- The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
- Not normally a hazard due to non-volatile nature of product.
- Inhalation of oil droplets/ aerosols may cause discomfort and may produce chemical pneumonitis.
- Fine mists generated from plant/ vegetable (or more rarely from animal) oils may be hazardous. Extreme heating for prolonged periods, at high temperatures, may generate breakdown products which include acrolein and acrolein-like substances.

CHRONIC HEALTH EFFECTS
- Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.
 - Synthetic 1,2-diglycerides of short chain (C6, C8, C10) fatty acids are activators of protein kinase C (PKC). PKC is a serine-threonine kinase of the cellular signal cascade, which eventually induces expression of growth regulatory genes. This, in turn, may promote the growth of tumours. Structural analogues of the 1,2-diglycerides, such as the phorbol esters, have been shown to strongly promote such an event.
 - Glyceryl dilaurate, glyceryl diarachidate, glyceryl dibehenate, glyceryl dierucate, glyceryl dihydroxystearate, glyceryl diisopalmitate, glyceryl disostearate, glyceryl dinoleate, glyceryl dimyristate, glyceryl dioleate, glyceryl diricinoleate, glyceryl distearate, glyceryl palmitate lactate, glyceryl stearate citrate, glyceryl stearate lactate, and glyceryl stearate succinate are diacylglycerols (also known as diglycerides or glyceryl diesters) that function as skin conditioning agents-emollients in cosmetics. Only glyceryl dilaurate (up to 5%), glyceryl disostearate (up to 43%), glyceryl dioleate (up to 2%), glyceryl distearate (up to 7%), and glyceryl stearate lactate (up to 5%) are reported to be in current use. Production proceeds from fully refined vegetable oils, which are further processed using hydrogenation and fractionation techniques, and the end products are produced by reacting selected mixtures of the partly hydrogenated, partly fractionated oils and fats with vegetable-derived glycerine to yield partial glycerides. In the final stage of the production process, the products are purified by deodorization, which effectively removes pesticide residues and lower boiling residues such as residues of halogenated solvents and aromatic solvents. Diglycerides have been approved by the Food and Drug Administration (FDA) for use as indirect food additives. Nominal, these ingredients are 1,3-diglycerides, but are easily isomerised to the 1,2-diglycerides form. The 1,3-diglyceride isomer is not a significant toxicant in acute, short-term, subchronic, or chronic animal tests. Glyceryl dilaurate was a mild primary irritant in albino rabbits, but not a skin sensitizer in guinea pig maximization tests. Diacylglycerol oil was not genotoxic in the Ames test, in mammalian Chinese hamster lung cells, or in a rodent bone marrow micronucleus assay. An eye shadow containing 1.5% glyceryl dilaurate did not induce skin irritation in a single insult patch test, but mild skin irritation reactions to a foundation containing the same concentration were observed. A trade mixture containing an unspecified concentration of glyceryl dibehenate did not induce irritation or ocular irritation in rabbit test systems.

Canadian WHMIS Symbols

Flammability: 1
Toxicity: 0
Body Contact: 2
Reactivity: 1
Chronic: 2

Canadian WHMIS Symbols

INHALATION

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
- The material may be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, unintentional ingestion is not thought to be cause for concern.

EYE
- Although the liquid is not thought to be an irritant, direct contact with the eye may produce transient discomfort characterized by tearing or conjunctival redness (as with windburn).

SKIN
- Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
- There is some evidence to suggest that the material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterized by redness, swelling and blistering.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
- The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
- Not normally a hazard due to non-volatile nature of product.
- Inhalation of oil droplets/ aerosols may cause discomfort and may produce chemical pneumonitis.
- Fine mists generated from plant/ vegetable (or more rarely from animal) oils may be hazardous. Extreme heating for prolonged periods, at high temperatures, may generate breakdown products which include acrolein and acrolein-like substances.

CHRONIC HEALTH EFFECTS
- Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.
 - Synthetic 1,2-diglycerides of short chain (C6, C8, C10) fatty acids are activators of protein kinase C (PKC). PKC is a serine-threonine kinase of the cellular signal cascade, which eventually induces expression of growth regulatory genes. This, in turn, may promote the growth of tumours. Structural analogues of the 1,2-diglycerides, such as the phorbol esters, have been shown to strongly promote such an event.
 - Glyceryl dilaurate, glyceryl diarachidate, glyceryl dibehenate, glyceryl dierucate, glyceryl dihydroxystearate, glyceryl diisopalmitate, glyceryl disostearate, glyceryl dinoleate, glyceryl dimyristate, glyceryl dioleate, glyceryl diricinoleate, glyceryl distearate, glyceryl palmitate lactate, glyceryl stearate citrate, glyceryl stearate lactate, and glyceryl stearate succinate are diacylglycerols (also known as diglycerides or glyceryl diesters) that function as skin conditioning agents-emollients in cosmetics. Only glyceryl dilaurate (up to 5%), glyceryl disostearate (up to 43%), glyceryl dioleate (up to 2%), glyceryl distearate (up to 7%), and glyceryl stearate lactate (up to 5%) are reported to be in current use. Production proceeds from fully refined vegetable oils, which are further processed using hydrogenation and fractionation techniques, and the end products are produced by reacting selected mixtures of the partly hydrogenated, partly fractionated oils and fats with vegetable-derived glycerine to yield partial glycerides. In the final stage of the production process, the products are purified by deodorization, which effectively removes pesticide residues and lower boiling residues such as residues of halogenated solvents and aromatic solvents. Diglycerides have been approved by the Food and Drug Administration (FDA) for use as indirect food additives. Nominal, these ingredients are 1,3-diglycerides, but are easily isomerised to the 1,2-diglycerides form. The 1,3-diglyceride isomer is not a significant toxicant in acute, short-term, subchronic, or chronic animal tests. Glyceryl dilaurate was a mild primary irritant in albino rabbits, but not a skin sensitizer in guinea pig maximization tests. Diacylglycerol oil was not genotoxic in the Ames test, in mammalian Chinese hamster lung cells, or in a rodent bone marrow micronucleus assay. An eye shadow containing 1.5% glyceryl dilaurate did not induce skin irritation in a single insult patch test, but mild skin irritation reactions to a foundation containing the same concentration were observed. A trade mixture containing an unspecified concentration of glyceryl dibehenate did not induce irritation or
significant cutaneous intolerance in a 48-h occlusive patch test. In maximization tests, neither an eye shadow nor a foundation containing 1.5% glyceryl dilaurate was a skin sensitizer. Sensitisation was not induced in subjects patch tested with 50% w/w glyceryl dioleate in a repeated insult, occlusive patch test. Glyceryl palmitate lactate (60% w/w) did not induce skin irritation or sensitization in subjects patch tested in a repeat-insult patch test. Phototoxicity or photoallergenicity was not induced in healthy volunteers tested with a lipstick containing 1.0% Glyceryl rosinate. Two diacylglycerols, 1-oleoyl-2-acetoyl-sn-glycerol and 1,2-dipalmitoyl-sn-glycerol, did not alter cell proliferation (as determined by DNA synthesis) in normal human dermal fibroblasts in vitro at doses up to 10 μg/ml. In the absence of initiation, Glyceryl distearate induced a moderate hyperplastic response in randomly bred mice of a tumor-resistant strain, and with 9,10-dimethyl-1,2-benzanthracene (DMBA) initiation, an increase in the total cell count was observed. In a glycerol monostearate study, a single application of DMBA to the skin followed by 5% glyceryl stearate twice weekly produced no tumors, but slight epidermal hyperplasia at the site of application. Glyceryl dioleate induced transformation in 3-methylcholanthrene-initiated BALB/3T3 A31-cloned cells in vitro. A tumour-promoting dosing regimen that consisted of multiple applications of 10 μmol of a 1,2-diacylglycerol (sn-1,2-didecanoylglycerol) to female mice twice daily for 1 week caused more than a 60% decrease in protein kinase C (PKC) activity and marked epidermal hyperplasia. Applications of 10 μmol sn-1,2-didecanoylglycerol twice weekly for 1 week caused a decrease in cytosolic PKC activity, an increase in particulate PKC activity, and no epidermal hyperplasia. In studies of the tumour-promoting activity of 1,2-diacylglycerols, dose and the exposure regimen by which the dose is delivered play a role in tumor promotion. The 1,2-diacylglycerol--induced activation of PKC may also relate to the saturation of the fatty acid in the 1 or 2 position; 1,2-Diacylglycerols with two saturated fatty acids are less effective. Also, the activity of 1,2-diacylglycerols may be reduced when the fatty acid moiety in the structure is a long-chain fatty acid. A histological evaluation was performed on human skin from female volunteers (18 to 56 years old) who had applied a prototype lotion or placebo formulation, both containing 0.5% Glyceryl Dilaurate, consecutively for 16 weeks or 21 weeks. Skin irritation was not observed in any of the subjects tested. Biopsies (2 mm) taken from both legs of five subjects indicated no recognizable abnormalities of the skin; the epidermis was normal in thickness, and there was no evidence of scaling, inflammation, or neoplasms in any of the tissues that were evaluated. The available safety test data indicate that diglycerides in the 1,3-diester form do not present any significant acute toxicity risk, nor are these ingredients irritating, sensitizing, or photosensitising. Whereas no data are available regarding reproductive or developmental toxicity, there is no reason to suspect any such toxicity because the dermal absorption of these chemicals is negligible. 1,3-Diglycerides contain 1,2-diglycerides, raising the question as to whether or not the induction of PKC and the tumour promotion potential of 1,2-diacylglycerols increases the level of concern. Most of the diglycerides considered above, however, have fatty acid chains longer than 14 carbons and none have mixed saturated/unsaturated fatty acid moieties. In a 21-week use study of a prototype lotion containing 0.5% glyceryl dilaurate (14-carbon chain fatty acid) indicated no evidence of scaling, inflammation, or neoplasms in biopsy specimens. Also, DNA synthesis assays on glyceryl dilaurate and glyceryl distearate indicated that neither chemical altered cell proliferation (as determined by DNA synthesis) in normal human dermal fibroblasts in vitro at doses up to 10 μg/ml. However the concentration of these ingredients can vary (up to 43% for glyceryl diisostearate in lipstick), the frequency of application can be several times daily, and the proportion of glycerides to fatty acid is high (i.e., 1.3 isomers). The 1,3 isomers of diglycerides are considered to be more irritating than 1,2 isomers, and hence the risk of such ingredients is considered to be lower. Although there are gaps in knowledge about product use, the overall information available on the types of products in which these ingredients are used and at what concentration indicates a pattern of use. Within this overall pattern of use, the CIR Expert Panel considers all ingredients in this group to be safe.

Glyceryl triesters (triglycerides), following ingestion, are metabolised to monoglycerides, free fatty acids and glycerol, all of which are absorbed in the intestinal mucosa and undergo further metabolism. Little or no acute, subchronic or chronic oral toxicity was seen in animal studies unless levels approached a significant percentage of caloric intake. Subcutaneous injections of tricaprylin in rats over a five-week period caused granulomatous reaction characterised by oil deposits surrounded by macrophages. Diets containing substantial levels of tributyrin produced gastric lesions in rats fed for 3-35 weeks; the irritative effect of the substance was thought to be the cause of tissue damage. Dermal application was not associated with significant irritation in rabbit skin; ocular exposures were, at most, mildly irritating to rabbit eyes. No evidence of sensitisation or photosensitisation was seen in a guinea pig maximisation test. Most of the genotoxicity test systems were negative. Tricaprylin, trioctanoin and triolein have been used, historically, as vehicles in carcinogenicity testing of other chemicals. In one study, subcutaneous injection of tricaprylin, in newborn mice, produced more tumors in lymphoid tissue than were seen in untreated animals whereas, in another study, subcutaneous or intraperitoneal injection in 4- to 6-week old female mice produced no tumors. Trioctanoin injected subcutaneously in hamster produced no tumours; when injected intraperitoneally in pregnant rats there was an increase in mammary tumours among the off-spring but similar studies in pregnant hamsters and rabbits showed no tumors in the off-spring. The National Toxicological Program conducted a 2-year study in rats given tricaprylin by gavage. The treatment was associated with a statistically significant dose-related increase in pancreatic acinar cell hyperplasia and adenoma but there were no acinar carcinomas.

Tricaprylin is not teratogenic to mice or rats but some reproductive effects were seen in rabbits. A low level of foetal eye abnormalities and a small percentage of abnormal sperm were reported in mice injected with trioctanoin.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>linseed oil</td>
<td>8001-26-1</td>
<td>100</td>
</tr>
<tr>
<td>consists of triglyceride esters of unsaturated fatty acids, as</td>
<td></td>
<td></td>
</tr>
<tr>
<td>linoleic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>linolenic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oleic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stearic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>free fatty acid content varies with</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
grade; raw linseed oil with 2-4% fatty acid
alkali refined linseed oil <0.5% fatty acid
phytoestrogens (high levels)

Section 4 - FIRST AID MEASURES

SWALLOWED
- Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Center or a doctor.

EYE
- If this product comes in contact with eyes:
- Wash out immediately with water.
- If irritation continues, seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN
- If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED
- If fumes or combustion products are inhaled remove from contaminated area.
- Other measures are usually unnecessary.

NOTES TO PHYSICIAN
- Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapour Pressure (mmHG)</td>
<td>Very low</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>0.93</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
</tr>
</tbody>
</table>

EXTINGUISHING MEDIA
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog - Large fires only.

FIRE FIGHTING
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- Do not approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
- Combustible.
- Slight fire hazard when exposed to heat or flame.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).
- May emit acrid smoke.
- Mists containing combustible materials may be explosive.

Combustion products include: carbon dioxide (CO2), acrolein, other pyrolysis products typical of burning organic material.
May emit poisonous fumes.
May emit corrosive fumes.
CARE: Water in contact with hot liquid may cause foaming and a steam explosion with wide scattering of hot oil and possible severe burns.
Foaming may cause overflow of containers and may result in possible fire.

FIRE INCOMPATIBILITY

- Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:
Chemical goggles.

Gloves:

Respirator:
Type A-P Filter of sufficient capacity

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Slippery when spilt.
- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid breathing vapors and contact with skin and eyes.
- Control personal contact by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- Place in a suitable labeled container for waste disposal.

MAJOR SPILLS

- Slippery when spilt.
- CARE: Absorbent material wet with occluded oil must be wet with water as they may auto-oxidize, become self heating and ignite.
- Some oils slowly oxidize when spread in a film and oil on cloths, mops, absorbents may auto-oxidize and generate heat, smoulder, ignite and burn. In the workplace oily rags should be collected and immersed in water.
- Moderate hazard.
- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- No smoking, naked lights or ignition sources. Increase ventilation.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labeled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labeled drums for disposal.
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

PROTECTIVE ACTION ZONE

From IERG (Canada/Australia)
- Isolation Distance
- Downwind Protection Distance

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerican or box with inner containers). Larger packages leaking less than 200
litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.

5 Guide No guide found. is taken from the US DOT emergency response guide book.

6 IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- DO NOT allow clothing wet with material to stay in contact with skin
- Rags wet / soaked with unsaturated hydrocarbons / drying oils may auto-oxidise; generate heat and, in-time, smoulder and ignite. This is especially the case where oil-soaked materials are folded, bunched, compressed, or piled together - this allows the heat to accumulate or even accelerate the reaction
- Oily cleaning rags should be collected regularly and immersed in water, or spread to dry in safe-place away from direct sunlight or stored, immersed, in solvents in suitably closed containers.
 - Avoid all personal contact, including inhalation.
 - Wear protective clothing when risk of exposure occurs.
 - Use in a well-ventilated area.
 - Prevent concentration in hollows and sumps.
 - DO NOT enter confined spaces until atmosphere has been checked.
 - Avoid smoking, naked lights or ignition sources.
 - Avoid contact with incompatible materials.
 - When handling, DO NOT eat, drink or smoke.
 - Keep containers securely sealed when not in use.
 - Avoid physical damage to containers.
 - Always wash hands with soap and water after handling.
 - Work clothes should be laundered separately.
 - Use good occupational work practice.
 - Observe manufacturer's storing and handling recommendations.
 - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

RECOMMENDED STORAGE METHODS

- Metal can or drum
- Packing as recommended by manufacturer.
- Check all containers are clearly labeled and free from leaks.

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- No smoking, naked lights or ignition sources.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS
Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records
- linseed oil: CAS:8001-26-1 CAS:67746-08-1 CAS:66071-03-2

MATERIAL DATA

LINSEED OIL:

- Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:
- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

vegetable oil mists (except castor, cashew nut and similar irritant oils)TLV TWA: 10 mg/m³ ES TWA: 10 mg/m³ OSHA PEL TWA: 15 mg/m³, total particulate; 5 mg/m³, respirable particulate. The common vegetable oil mists are considered "nuisance" particulates which have little adverse effect on the lung. They do not produce toxic effects or significant organic disease when exposures are kept under reasonable control. Direct instillation of vegetable oils into rabbit lungs produces acute bronchitis whilst high oral doses are laxatives.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET

- Wear chemical protective gloves, eg. PVC.
- Wear safety footwear or safety gumboots, eg. Rubber.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (eg. Europe EN 374, US F739).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER

- Overalls.
- P.V.C. apron.
RESPIRATOR
Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

<table>
<thead>
<tr>
<th>Breathing Zone Level ppm (volume)</th>
<th>Maximum Protection Factor</th>
<th>Half-face Respirator</th>
<th>Full-Face Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>10</td>
<td>A-1 P</td>
<td>-</td>
</tr>
<tr>
<td>1000</td>
<td>50</td>
<td>-</td>
<td>A-1 P</td>
</tr>
<tr>
<td>5000</td>
<td>50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5000</td>
<td>100</td>
<td>-</td>
<td>A-2 P</td>
</tr>
<tr>
<td>10000</td>
<td>100</td>
<td>-</td>
<td>A-3 P</td>
</tr>
<tr>
<td>100+</td>
<td>-</td>
<td>-</td>
<td>Airline* *</td>
</tr>
</tbody>
</table>

* - Continuous Flow ** - Continuous-flow or positive pressure demand.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required. Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS
General exhaust is adequate under normal operating conditions. If risk of overexposure exists, wear an approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

- Type of Contaminant: Air Speed:
 - solvent, vapors, degreasing etc., evaporating from tank (in still air) 0.25-0.5 m/s (50-100 f/min)
 - aerosols, fumes from pouring operations, intermittent container filling, low speed conveyor transfers, welding, spray drift, plating acid fumes, picking (released at low velocity into zone of active generation) 0.5-1 m/s (100-200 f/min.)
 - direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) 1-2.5 m/s (200-500 f/min)
 - grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion) 2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:
 - Lower end of the range 1: Room air currents minimal or favorable to capture
 - Upper end of the range 1: Disturbing room air currents
 - 2: Contaminants of low toxicity or of nuisance value only 2: Contaminants of high toxicity
 - 3: Intermittent, low production. 3: High production, heavy use
 - 4: Large hood or large air mass in motion 4: Small hood - local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Care: Atmospheres in bulk storages and even apparently empty tanks may be hazardous by oxygen depletion. Atmosphere must be checked before entry.

Requirements of State Authorities concerning conditions for tank entry must be met. Particularly with regard to training of crews for tank entry; work permits; sampling of atmosphere; provision of rescue harness and protective gear as needed.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES
Liquid.
Does not mix with water.
Floats on water.

<table>
<thead>
<tr>
<th>State</th>
<th>Liquid</th>
<th>Molecular Weight</th>
<th>Viscosity</th>
<th>Solubility in water (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Range (°F)</td>
<td>-2.2</td>
<td>Viscosity</td>
<td>Not Available</td>
<td></td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>>644</td>
<td>Solubility in water (g/L)</td>
<td>Immiscible</td>
<td></td>
</tr>
</tbody>
</table>
Flash Point (°F) 431.6
Decomposition Temp (°F) Not available
Autoignition Temp (°F) 649.4
Upper Explosive Limit (%) Not available
Lower Explosive Limit (%) Not available
Volatile Component (%vol) <0.5
VOC(regulatory) lb/gall
VOC(actual) lb/gall

APPEARANCE
Pale yellow to amber clear liquid, floats on water. Characteristic odour. Mixes with most organic solvents. Available in several grades and purity: alkali refined oil palest colour lowest free fatty acid content raw oil brown amber colour higher free fatty acid content Thin liquid films oxidise in air and convert to dry solid films. Prolonged heat treatment at high temperatures produces thickened oil; known as stand oil, bodied oil, polymerised oil, linseed stand oil. Boiled oils are heat thickened oils containing metal additives as driers. Linseed oil contains high levels of phytooestrogens.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY
- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY
- Contact with high pressure oxygen may cause ignition / combustion.
- Materials soaked with plant/vegetable derived (and rarely, animal) oils may undergo spontaneous combustion
Avoid reaction with oxidizing agents.
For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

linseed oil

TOXICITY AND IRRITATION
- unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin (human): 300 mg/3days-Moderate</td>
<td></td>
</tr>
</tbody>
</table>

- The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.
- The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:
LINSEED OIL:
- Substances containing unsaturated carbons are ubiquitous in indoor environments. They result from many sources (see below). Most are reactive with environmental ozone and many produce stable products which are thought to adversely affect human health. The potential for surfaces in an enclosed space to facilitate reactions should be considered.

<table>
<thead>
<tr>
<th>Source of unsaturated substances</th>
<th>Unsaturated substances (Reactive Emissions)</th>
<th>Major Stable Products produced following reaction with ozone.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupants (exhaled breath, ski oils, personal care products)</td>
<td>isoprene, nitric oxide, squalene, unsaturated sterols, oleic acid and other unsaturated fatty acids, unsaturated oxidation products</td>
<td>Methacrolein, methyl vinyl ketone, nitrogen dioxide, acetone, 6MHQ, geranyl acetone, 4OPA, formaldehyde, nonanol, decanal, 9-oxo-nonanoic acid, azelaic acid, nonanoic acid.</td>
</tr>
<tr>
<td>Soft woods, wood flooring, including cypress, cedar and silver fir boards, houseplants</td>
<td>isoprene, limonene, alpha-pinene, other terpenes and sesquiterpenes</td>
<td>Formaldehyde, 4-AMC, pinoaldehyde, pinic acid, pinonic acid, formic acid, methacrolein, methyl vinyl ketone, SOAs including ultrafine particles</td>
</tr>
<tr>
<td>Carpets and carpet backing</td>
<td>4-Phenylcyclohexene, 4-vinylcyclohexene, styrene, 2-ethylhexyl acrylate, unsaturated fatty acids and esters</td>
<td>Formaldehyde, acetaldehyde, benzaldehyde, hexanal, nonanal, 2-nonenal</td>
</tr>
<tr>
<td>Natural rubber adhesive</td>
<td>Isoprene, terpenes</td>
<td>Formaldehyde, methacrolein, vinyl ketone</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Photocopy toner, printed paper, styrene polymers</td>
<td>Styrene</td>
<td>Formaldehyde, benzaldehyde</td>
</tr>
<tr>
<td>Environmental tobacco smoke</td>
<td>Styrene, acrolein, nicotine</td>
<td>Formaldehyde, benzaldehyde, hexanal, glyoxal, N-methylformamide, nicotinldehyde, cotinine</td>
</tr>
<tr>
<td>Soiled clothing, fabrics, bedding</td>
<td>Squalene, unsaturated sterols, oleic acid and other saturated fatty acids</td>
<td>Acetone, geranyl acetone, 6MHQ, 4OPA, formaldehyde, nonanal, decanal, 9-oxo-nonanoic acid, azelaic acid, nonanoic acid</td>
</tr>
<tr>
<td>Soiled particle filters</td>
<td>Unsaturated fatty acids from plant waxes, leaf litter, and other vegetative debris; soot; diesel particles</td>
<td>Formaldehyde, nonanal, and other aldehydes; azelaic acid; nonanoic acid; 9-oxo-nonanoic acid and other oxo-acids; compounds with mixed functional groups (=O, -OH, and -COOH)</td>
</tr>
<tr>
<td>Ventilation ducts and duct liners</td>
<td>Unsaturated fatty acids and esters, unsaturated oils, neoprene</td>
<td>C5 to C10 aldehydes</td>
</tr>
<tr>
<td>"Urban grime"</td>
<td>Polycyclic aromatic hydrocarbons</td>
<td>Oxidized polycyclic aromatic hydrocarbons</td>
</tr>
<tr>
<td>Perfumes, colognes, essential oils (e.g. lavender, eucalyptus, tea tree)</td>
<td>Limonene, alpha-pinene, linalool, linalyl acetate, terpine-4-ol, gamma-terpinene</td>
<td>Formaldehyde, 4-AMC, acetaldehyde, hexanal, 4-hydroxy-4-methyl-5-hexen-1-ol, 5-ethylidihydro-5-methyl-2(3H)-furanone, SOAs including ultrafine particles</td>
</tr>
<tr>
<td>Overall home emissions</td>
<td>Limonene, alpha-pinene, styrene</td>
<td>Formaldehyde, 4-AMC, pinonaldehyde, acetone, pinic acid, pinonic acid, formic acid, benzaldehyde, SOAs including ultrafine particles</td>
</tr>
</tbody>
</table>

Abbreviations: 4-AMC, 4-acetyl-1-methycyclohexene; 6MHQ, 6-methyl-5-heptene-2-one, 4OPA, 4-oxopentan-1-one, SOA, Secondary Organic Aerosols

Reference: Charles J Weschler; Environmental Health Perspectives, Vol 114, October 2006.

- Unsaturated vegetable oils are often used in paints which upon "drying" produce a polymeric network formed of the constituent fatty acids. During the drying process, a number of compounds are produced that do not contribute to the polymer network. These include unstable hydroperoxide (ROOH) the major by-product of the reaction of oxygen with unsaturated fatty acids. The hydroperoxides quickly decompose, forming carbon dioxide and water, as well as a variety of aldehydes, acids and hydrocarbons. Many of these compounds are volatile, and in an unpigmented oil, they would be quickly lost to the environment. However, in paints, such volatiles may react with lead, zinc, copper or iron compounds in the pigment, and remain in the paint film as coordination complexes or salts. A large number of the original ester bonds in the oil molecules undergo hydrolysis releasing individual fatty acids. Some portion of the free fatty acids react with metals in the pigment, producing metal carboxylates. Together, the various non-cross-linking substances associated with the polymer network constitute the mobile phases. Unlike the molecules that are part of the network itself, they are capable of moving and diffusing within the film, and can be removed using heat or a solvent. The mobile phase may play a role in plasticising the paint film, preventing it from becoming too brittle. One simple technique for monitoring the early stages of the drying process is to measure weight change in an oil film over time. Initially, the film becomes heavier, as it absorbs large amounts of oxygen. Then oxygen uptake ceases, and the weight of the film declines as volatile compounds are lost to the environment.

As the oil ages, a further transition occurs. Carboxyl groups in the polymers of the stationary phase lose a hydrogen ion, becoming negatively charged, and form complexes with metal cations present in the pigment. The original network, with its nonpolar, covalent bonds is replaced by an ionicomer structure, held together by ionic interactions. At present, the structure of these ionicomeric networks is not well understood.

- DO NOT discharge into sewer or waterways.

GESAMP/EHS COMPOSITE LIST - GESAMP Hazard Profiles

| Name / Cas No / RTECS No | EHS | TRN | A1a | A1b | A1 | A2 | B1 | B2 | C1 | C2 | C3 | D1 | D2 | D3 | E1 | E2 | E3 |
|--------------------------|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|----|----|
| E1 INTER FE INTER CAS 8001-26-1 | 23 | 8 | 30 | 8 | 0 | NI | 0 | R (2) | NI | 0 | (0) | (1) | (0) | (1) | Fp | 2 |

Legend: EHS=EHS Number (EHS=GESAMP Working Group on the Evaluation of the Hazards of Harmful Substances Carried by Ships) NRT=Net Register Tonnage, A1=Bioaccumulation log Pow, A1b=Bioaccumulation BCF, A1=Bioaccumulation, A2=Biodegradation, B1=Acuteaquatic toxicity LC50 (mg/l), B2=Chronic aquatic toxicity NOEC (mg/l), C1=Acute mammalian oral toxicity LD50 (mg/kg), C2=Acute mammalian dermal toxicity LD50 (mg/kg), C3=Acute mammalian inhalation toxicity LC50 (mg/kg), D1=Skin irritation & corrosion, D2=Eye irritation& corrosion, D3=Long-term health effects, E1=Tainting, E2=Physical effects on wildlife & benthic habitats, E3=Interference with coastal amenities, For column A2: R=Readily biodegradable, NR=Not readily biodegradable. For column D3: C=Carcinogen,
Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions
All waste must be handled in accordance with local, state and federal regulations.
Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.
A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.
- Recycle wherever possible or consult manufacturer for recycling options.
- Consult Waste Management Authority for disposal.
- Bury or incinerate residue at an approved site.
- Recycle containers if possible, or dispose of in an authorized landfill.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

REGULATIONS
Linseed oil (CAS: 8001-26-1, 67746-08-1, 66071-03-2) is found on the following regulatory lists;

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE
- Cumulative effects may result following exposure*.
- May produce skin discomfort*.
* (limited evidence).

Ingredients with multiple CAS Nos

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>CAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>linseed oil</td>
<td>8001-26-1, 67746-08-1, 66071-03-2</td>
</tr>
</tbody>
</table>

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use.

For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.
- A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the

11 of 12
reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Nov-14-2009
Print Date: Jul-23-2010