Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Sodium borohydride

STATEMENT OF HAZARDOUS NATURE

NFPA

Section 2 - HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW
RISK
Very toxic by inhalation.
Causes severe burns.
Risk of serious damage to eyes.
Reacts violently with water liberating extremely flammable gases.
Toxic in contact with skin and if swallowed.

POTENTIAL HEALTH EFFECTS
ACUTE HEALTH EFFECTS
SWALLOWED

- Toxic effects may result from the accidental ingestion of the material; animal experiments indicate that ingestion of less than 40 grams may be fatal or may produce serious damage to the health of the individual.
- The material can produce severe chemical burns within the oral cavity and gastrointestinal tract following ingestion.
- Borate poisoning causes nausea, vomiting, diarrhea and pain in the upper abdomen. Often persistent vomiting occurs, and there may be blood in the feces. There may also be weakness, lethargy, headache, restlessness, tremors and convulsions. All borates cause similar effects; the lethal dose is over 30 grams. Poisoning initially stimulates the central nervous system before causing depression, as well as disturbing the digestive system, causing skin eruptions, and damage to the liver and kidneys. Borate is mostly eliminated from the body via the kidneys.
- Ingestion of alkaline corrosives may produce burns around the mouth, ulcerations and swellings of the mucous membranes, profuse saliva production, with an inability to speak or swallow. Both the esophagus and stomach may experience burning pain; vomiting and diarrhea may follow. Epiglottal swelling may result in respiratory distress and asphyxia; shock can occur. Narrowing of the esophagus, stomach or stomach valve may occur immediately or after a long delay (weeks to years). Severe exposure can perforate the esophagus or stomach leading to infections of the chest or abdominal cavity, with low chest pain, abdominal stiffness and fever. All of the above can cause death.

EYE

- The material can produce severe chemical burns to the eye following direct contact. Vapors or mists may be extremely irritating.
- If applied into the eyes, this material causes severe eye damage.
- When instilled into the eyes of rabbits, 1 mg sodium borohydride produced irreversible damage.

SKIN

- Skin contact with the material may produce toxic effects; systemic effects may result following absorption.
- The material can produce severe chemical burns following direct contact with the skin.
- When sodium borohydride was applied to the moist back skin of rabbits 6 of 10 died when 400 mg was applied in two doses in the same area. However when a single application was made in different areas no deaths resulted. Sodium borohydride on dry skin produced no signs of irritation.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
- Solution of material in moisture on the skin, or perspiration, may markedly increase skin corrosion and accelerate tissue destruction.
- This material can cause inflammation of the skin on contact in some persons.

INHALED

- Inhalation of vapors, aerosols (mists, fumes) or dusts, generated by the material during the course of normal handling, may produce severely toxic effects; these may be fatal.
- The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disable if excessive concentrations of particulate are inhaled.
- Diborane produces toxic bronchopulmonary effects. Overexposure by humans to diborane produces a sensation of chest tightness leading to diaphragmatic pain, shortness of breath, cough and, occasionally, nausea. Nervous system intoxication may also occur. Respiratory distress in dogs and rabbits is followed by a slight fall in blood pressure, increased activity of the intestinal smooth muscle and an increase and subsequent diminution of cortical activity.
- These findings are consistent with anoxia (oxygen starvation). The primary effect of diborane poisoning is the production of pulmonary oedema resulting from local irritation set-off by an exothermic hydrolysis reaction. Pneumonitis has been encountered in human poisonings. Bradycardia occurs late in the intoxication to be followed by ventricular fibrillation or disappearance of ventricular activity, and death.

CHRONIC HEALTH EFFECTS

- Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis. Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray. Chronic effects of diborane exposure include respiratory distress. Prolonged exposure to low concentrations causes headache, vertigo, chills and, sometimes, fever. Daily 6 hour exposures at 7 ppm proved fatal in dogs (10-26 exposures) and rats (7-113 exposures). Although pulmonary changes could not be substantiated, the repeated respiratory insult was thought to be the underlying cause of death. Dogs developed signs of respiratory infection probably secondary to respiratory irritation. Borate can accumulate in the testes and deplete germ cells and cause withering of the testicles, according to animal testing. Hair loss, skin inflammation, stomach ulcer and anemia can all occur. Repeated swallowing or inhalation irritates the stomach; causes a loss of appetite, disturbed digestion, nausea and vomiting, red rash, dry skin and mucous membranes, reddening of the tongue, cracking of the lips, inflamed conjunctiva, swelling of the eyelids and kidney injury. Prolonged ingestion causes effects to the reproductive system in both males and females.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

Flammability: 1
Section 4 - FIRST AID MEASURES

SWALLOWED
- For advice, contact a Poisons Information Center or a doctor at once.
- Urgent hospital treatment is likely to be needed.
- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casually can comfortably drink.
- Transport to hospital or doctor without delay.

EYE
- If this product comes in contact with the eyes:
 - Immediately hold eyelids apart and flush the eye continuously with running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes.
 - Transport to hospital or doctor without delay.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

For THERMAL burns:
- Do NOT remove contact lens
- Lay victim down, on stretcher if available and pad BOTH eyes, make sure dressing does not press on the injured eye by placing thick pads under dressing, above and below the eye.
- Seek urgent medical assistance, or transport to hospital.

SKIN
- If skin or hair contact occurs:
 - Immediately flush body and clothes with large amounts of water, using safety shower if available.
 - Quickly remove all contaminated clothing, including footwear.
 - Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Center.
 - Transport to hospital, or doctor.
 - In case of burns:
 - Immediately apply cold water to burn either by immersion or wrapping with saturated clean cloth.
 - DO NOT remove or cut away clothing over burnt areas. DO NOT pull away clothing which has adhered to the skin as this can cause further injury.
 - DO NOT break blister or remove solidified material.
 - Quickly cover wound with dressing or clean cloth to help prevent infection and to ease pain.
 - For large burns, sheets, towels or pillow slips are ideal; leave holes for eyes, nose and mouth.
 - DO NOT apply ointments, oils, butter, etc. to a burn under any circumstances.
 - Water may be given in small quantities if the person is conscious.
 - Alchol is not to be given under any circumstances.
 - Reassure.
 - Treat for shock by keeping the person warm and in a lying position.
 - Seek medical aid and advise medical personnel in advance of the cause and extent of the injury and the estimated time of arrival of the patient.

INHALED
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patent down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN
- for pentaborane(9) intoxication:
 Pentaborane(9) forms a nonvolatile hydrolysis intermediate in the bloodstream of rats with the evolution of molecular hydrogen. Histidine seems to stabilize the intermediate and its disappearance seems to be enzymatically mediated. Hyperglycemia,
apparently caused by the action of this intermediate, may result in nervous tissue disability and thus produces the CNS response noted in experimental intoxication. Pentaborane resembles decaborane in producing CNS problems. The toxicity of decaborane may involve inhibition of pyridoxal phosphate-requiring enzymes (three decarboxylases and one transaminase) which produce noradrenaline (norepinephrine), dopamine and serotonin in rat brain and histamine in several rat tissues. This is thought to be mediated by the non-enzymatic formation of B10H13-anion from decaborane which reduces phosphate. Methylene blue, a stable oxidizing agent, infused into rabbits, continuously for two days, produced a vastly improved survival rate in animals injected with potentially lethal doses of decaborane. An impressive feature of methylene blue therapy was the prevention of brain and heart noradrenaline depletion following decaborane intoxication. Respiratory stimulants (atropine), depressants (pentabarbitral) and adrenal stimulatory agents (cortisone), did not appear to be effective in experimental diborane poisonings. Methylene blue therapies have had some success.

For acute or repeated short term exposures to boron and its compounds:
- Nausea, vomiting, diarrhea and epigastric pain, hematemesis and blue-green discoloration of both feces and vomitus characterize adult boron intoxication.
- Access and correct any abnormalities found in airway and circulation.
- A tidal volume of 10-15 mg/kg should be maintained.
- Emesis should be induced unless the patient is in coma, is experiencing seizures or has lost the gag reflex. If any of these are present, gastric lavage should be performed with a large-bore tube after endotracheal intubation or in the presence of continuous respiratory action.
- Activated charcoal is probably not of value though its use might be indicated following gastric evacuation. Catharsis might be useful to eliminate any borates remaining in the gastro-intestinal tract (magnesium sulfate: adults, 30gms: children 250 mg/kg).
- Peritoneal dialysis and hemodialysis remove some borates.

[Ellenhorn and Barceloux: Medical Toxicology].

Section 5 - FIRE FIGHTING MEASURES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapour Pressure (mmHg)</td>
<td>Not available.</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available.</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>1.07</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available.</td>
</tr>
</tbody>
</table>

EXTINGUISHING MEDIA
- DO NOT use halogenated fire extinguishing agents.
- DO NOT USE WATER, CO2 OR FOAM ON SUBSTANCE ITSELF

For SMALL FIRES:
- Dry chemical, soda ash or lime.

For LARGE FIRES:
- DRY sand, dry chemical, soda ash;
- OR withdraw and allow fire to burn itself out.

FIRE FIGHTING
- Alert Emergency Responders and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear full protective clothing plus breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place)
- DO NOT use water on fires.
- CAUTION: If only water available, use flooding quantities of water or withdraw personnel.
- DO NOT allow water to enter containers.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with flooding quantities of water from a protected location until well after fire is out.
- If safe to do so, remove undamaged containers from path of fire.
- If fire gets out of control withdraw personnel and warn against entry.
- Equipment should be thoroughly decontaminated after use.
- Fight fire from a protected position or use unmanned hose holders or monitor nozzles.
- Withdraw immediately in case of rising sound from venting safety devices or discoloration of tanks.
- ALWAYS stay away from tank ends.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
- May ignite on contact with air, moist air or water.
- May react vigorously or explosively on contact with water.
- May decompose explosively when heated or involved in fire.
- May REIGNITE after fire is extinguished.
- Gases generated after contact with water or moist air may be poisonous, corrosive or irritating.
- Gases generated in fire may be poisonous, corrosive or irritating.
- Containers may explode on heating.
- Runoff may create multiple fire or explosion hazard.

Combustion products include: metal oxides. Decomposes on heating and produces toxic fumes of boric acid, boric oxide. Sodium borohydride is spontaneously combustible in air at 90-100 deg C. The presence of moisture causes ignition to occur more readily. Contact with acids produces toxic, flammable diborane gas. Flammable hydrogen gas formed on heating and in contact with water or moist air.

FIRE INCOMPATIBILITY
- Segregate from alcohol, water.
- NOTE: May develop pressure in containers; open carefully. Vent periodically.
Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Eliminate all ignition sources.
- Cover with WET earth, sand or other non-combustible material.
- Use clean, non-sparking tools to collect absorbed material
- Wear gloves and safety glasses as appropriate.

MAJOR SPILLS

- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- Eliminate all ignition sources (no smoking, flares, sparks or flames)
- Stop leak if safe to do so; prevent entry into waterways, drains or confined spaces.
- May be violently or explosively reactive.
- DO NOT walk through spilled material.
- Wear full protective clothing plus breathing apparatus.
- DO NOT touch damaged containers or spilled material unless wearing appropriate protective clothing.
- Cover with WET earth, sand or other non-combustible material.
- Water spray may be used to knock down vapors or divert vapor clouds.
- Use clean, non-sparking tools to collect absorbed material and place into loosely-covered metal or plastic containers ready for disposal.
- Alternately, the spill may be contained using WET earth, sand, or other non-combustible material.
- Recover the liquid using non-sparking appliances and place in labeled, sealable container.
- Wash area with water and dike for later disposal;
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

From IERG (Canada/Australia)

<table>
<thead>
<tr>
<th>Isolation Distance</th>
<th>50 meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downwind Protection Distance</td>
<td>500 meters</td>
</tr>
</tbody>
</table>

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.

6 IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

<table>
<thead>
<tr>
<th>diborane</th>
<th>AEGL Type</th>
<th>10 min</th>
<th>30 min</th>
<th>60 min</th>
<th>4 hr</th>
<th>8 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEGL 1</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>UNI_TYP16~</td>
<td></td>
</tr>
<tr>
<td>AEGL 2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0.25</td>
<td>GALSYN~</td>
<td></td>
</tr>
<tr>
<td>AEGL 3</td>
<td>7.3</td>
<td>7.3</td>
<td>3.7</td>
<td>0.92</td>
<td>GALSYN~</td>
<td></td>
</tr>
</tbody>
</table>

NOTES

NR = Not recommended due to insufficient data
AEG1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEG2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEG3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- For large scale or continuous use, spark-free, earthed ventilation system venting directly to the outside and separate from usual ventilation systems.
- Provide dust collectors with explosion vents.
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of overexposure occurs.
- Use in a well-ventilated area.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately and before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing/handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

NOTE: The material may remove oxygen from the air thus producing a severe hazard to workers inside enclosed or confined spaces where the material might accumulate. Before entry to such areas, sampling and test procedures for low oxygen levels should be undertaken; control conditions should be established to ensure the availability of adequate oxygen supply.

RECOMMENDED STORAGE METHODS

- Storage containers must be hermetically sealed under an inert atmosphere.
- For low viscosity materials and solids: Drums and jerricans must be of the non-removable head type. Where a can is to be used as an inner package, the can must have a screwed enclosure. For materials with a viscosity of at least 2680 cSt. (23 deg. C):
 - Removable head packaging and
 - cans with friction closures may be used.

For combination packages are used, there must be sufficient inert absorbent material to absorb completely any leakage that may occur, unless the outer packaging is a close fitting molded plastic box and the substances are not incompatible with the plastic. All combination packages for Packing group I and II must contain cushioning material.

STORAGE REQUIREMENTS

- KEEP DRY! Packages must be protected from water ingress.
- For MINOR QUANTITIES:
 - Store in an indoor fireproof cabinet or in a room of noncombustible construction and
 - provide adequate portable fire-extinguishers in or near the storage area.
- FOR PACKAGE STORAGE:
 - Store in original containers in approved flame-proof area.
 - No smoking, naked lights, heat or ignition sources.
 - DO NOT store in pits, depressions, basements or areas where vapors may be trapped.
 - Keep containers securely sealed.
 - Store away from incompatible materials in a cool, dry well ventilated area.
 - Protect containers against physical damage and check regularly for leaks.
 - Protect containers from exposure to weather and from direct sunlight unless: (a) the packages are of metal or plastic construction; (b) the packages are securely closed and not opened for any purpose while in the area where they are stored and (c) adequate precautions are taken to ensure that rain water, which might become contaminated by the dangerous goods, is collected and disposed of safely.
 - Ensure proper stock-control measures are maintained to prevent prolonged storage of dangerous goods.
 - Automatic fire-sprinklers MUST NOT be installed in room or space.
 - The room or space must be located at least five meters from the boundaries of the premises and from other buildings unless separated by a wall with a fire resistance of at least four hours.
 - Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

X X + X X +
Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Peak ppm</th>
<th>Peak mg/m³</th>
<th>TWA F/CC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)</td>
<td>sodium borohydride (BORON AND COMPOUNDS)</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Oregon Permissible Exposure Limits (Z3)</td>
<td>sodium borohydride (Inert or Nuisance Dust: (d) Total dust)</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z3</td>
<td>sodium borohydride (Inert or Nuisance Dust: (d) Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Hawaii Air Contaminant Limits</td>
<td>sodium borohydride (Particulates not otherwise regulated - Total dust)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Hawaii Air Contaminant Limits</td>
<td>sodium borohydride (Particulates not otherwise regulated - Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Oregon Permissible Exposure Limits (Z3)</td>
<td>sodium borohydride (Inert or Nuisance Dust: (d) Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants</td>
<td>sodium borohydride (Particulates not otherwise regulated Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants</td>
<td>sodium borohydride (Particulates not otherwise regulated (PNOR)/(f)-Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Michigan Exposure Limits for Air Contaminants</td>
<td>sodium borohydride (Particulates not otherwise regulated, Respirable dust)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Oregon Permissible Exposure Limits (Z1)</td>
<td>hydrogen (Hydrogen)</td>
<td></td>
<td>1,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances</td>
<td>hydrogen (Hydrogen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(See Table 12)</td>
</tr>
<tr>
<td>Canada - British Columbia Occupational Exposure Limits</td>
<td>sodium hydroxide (Sodium hydroxide)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Ontario Occupational Exposure Limits</td>
<td>sodium hydroxide (Sodium hydroxide)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Minnesota Permissible Exposure Limits (PELs)</td>
<td>sodium hydroxide (Sodium hydroxide)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US ACGIH Threshold Limit Values (TLV)</td>
<td>sodium hydroxide (Sodium hydroxide)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US NIOSH Recommended Exposure Limits (RELs)</td>
<td>sodium hydroxide (Sodium hydroxide)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Alberta Occupational Exposure Limits</td>
<td>sodium hydroxide (Sodium hydroxide)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants</td>
<td>sodium hydroxide (Sodium hydroxide)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants</td>
<td>sodium hydroxide (Sodium hydroxide)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

US NIOSH Recommended Exposure Limits (RELs)
- Source: US NIOSH
- Material: Various substances
- TWA ppm: Various values
- TWA mg/m³: Various values
- STEL ppm: Various values
- STEL mg/m³: Various values
- Peak ppm: Various values
- Peak mg/m³: Various values
- TWA F/CC: Various values

Canada - Alberta Occupational Exposure Limits
- Source: Canada NIOSH
- Material: Various substances
- TWA ppm: Various values
- TWA mg/m³: Various values
- STEL ppm: Various values
- STEL mg/m³: Various values
- Peak ppm: Various values
- Peak mg/m³: Various values
- TWA F/CC: Various values

US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants
- Source: US NIOSH
- Material: Various substances
- TWA ppm: Various values
- TWA mg/m³: Various values
- STEL ppm: Various values
- STEL mg/m³: Various values
- Peak ppm: Various values
- Peak mg/m³: Various values
- TWA F/CC: Various values

Notes:

- TLV: Threshold Limit Value
- Basis: Various values
- Upper respiratory tract, eye & skin irritation

US - Vermont Permissible Exposure Limits
- Source: US NIOSH
- Material: Various substances
- TWA ppm: Various values
- TWA mg/m³: Various values
- STEL ppm: Various values
- STEL mg/m³: Various values
- Peak ppm: Various values
- Peak mg/m³: Various values
- TWA F/CC: Various values

Notes:

- TLV: Various values
- Basis: Various values
- Upper respiratory tract, eye & skin irritation

US - Vermont Permissible Exposure Limits
- Source: US NIOSH
- Material: Various substances
- TWA ppm: Various values
- TWA mg/m³: Various values
- STEL ppm: Various values
- STEL mg/m³: Various values
- Peak ppm: Various values
- Peak mg/m³: Various values
- TWA F/CC: Various values

Notes:

- TLV: Various values
- Basis: Various values
- Upper respiratory tract, eye & skin irritation
<table>
<thead>
<tr>
<th>Location</th>
<th>Compound</th>
<th>Limit 1</th>
<th>Limit 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>US - California Limits for Air Contaminants</td>
<td>sodium hydroxide (Sodium hydroxide)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>US - Idaho - Limits for Air Contaminants</td>
<td>sodium hydroxide (Sodium hydroxide)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z1</td>
<td>sodium hydroxide (Sodium hydroxide)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>US - Hawaii Air Contaminant Limits</td>
<td>sodium hydroxide (Sodium hydroxide)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>US - Alaska Limits for Air Contaminants</td>
<td>sodium hydroxide (Sodium hydroxide)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>US - Michigan Exposure Limits for Air Contaminants</td>
<td>sodium hydroxide (Sodium hydroxide)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances</td>
<td>sodium hydroxide (Sodium hydroxide)</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>US - Washington Permissible exposure limits of air contaminants</td>
<td>sodium hydroxide (Sodium hydroxide)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits</td>
<td>sodium hydroxide (Sodium hydroxide)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Canada - Prince Edward Island Occupational Exposure Limits</td>
<td>sodium hydroxide (Sodium hydroxide)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants</td>
<td>sodium hydroxide (Sodium hydroxide)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)</td>
<td>sodium hydroxide (Sodium hydroxide)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>US - Oregon Permissible Exposure Limits (Z1)</td>
<td>sodium hydroxide (Sodium hydroxide)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Canada - Northwest Territories Occupational Exposure Limits (English)</td>
<td>sodium hydroxide (Sodium hydroxide)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Canada - Nova Scotia Occupational Exposure Limits</td>
<td>sodium hydroxide (Sodium hydroxide)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Canada - Alberta Occupational Exposure Limits</td>
<td>diborane (Diborane)</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Canada - British Columbia Occupational Exposure Limits</td>
<td>diborane (Diborane)</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Canada - Ontario Occupational Exposure Limits</td>
<td>diborane (Diborane)</td>
<td>0.1</td>
<td>0.11</td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z1</td>
<td>diborane (Diborane)</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>US ACGIH Threshold Limit Values (TLV)</td>
<td>diborane (Diborane)</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>US NIOSH Recommended Exposure Limits (RELs)</td>
<td>diborane (Diborane)</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants</td>
<td>diborane (Diborane)</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>US - Vermont Permissible</td>
<td>diborane (Diborane)</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>
Exposure Limits Table Z-1-A

<table>
<thead>
<tr>
<th>Material</th>
<th>Revised IDLH Value (mg/m3)</th>
<th>Revised IDLH Value (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sodium hydroxide</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>diborane</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SODIUM BOROHYDRIDE:
- Odour Threshold Value: 1.8-3.5 ppm
- IDLH Level: 15 ppm

DIBORANE:
- Odour Threshold Value: 1.8-3.5 ppm
- IDLH Level: 15 ppm

Transitional Limits for Air Contaminants

- **Diborane (Diborane):**
 - 0.1

US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants

- **Diborane (Diborane):**
 - 0.1

US - Minnesota Permissible Exposure Limits (PELs)

- **Diborane (Diborane):**
 - 0.1

US - California Permissible Exposure Limits for Chemical Contaminants

- **Diborane (Diborane):**
 - 0.1

US - Idaho - Limits for Air Contaminants

- **Diborane (Diborane):**
 - 0.1

US - Hawaii Air Contaminant Limits

- **Diborane (Diborane):**
 - 0.1

US - Alaska Limits for Air Contaminants

- **Diborane (Diborane):**
 - 0.1

US - Michigan Exposure Limits for Air Contaminants

- **Diborane (Diborane):**
 - 0.1

Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances

- **Diborane (Diborane):**
 - 0.1

US - Washington Permissible exposure limits of air contaminants

- **Diborane (Diborane):**
 - 0.1

Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits

- **Diborane (Diborane):**
 - 0.1

Canada - Prince Edward Island Occupational Exposure Limits

- **Diborane (Diborane):**
 - 0.1

US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants

- **Diborane (Diborane):**
 - 0.1

Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)

- **Diborane (Diborane):**
 - 0.1

US - Oregon Permissible Exposure Limits (Z1)

- **Diborane (Diborane):**
 - 0.1

Canada - Northwest Territories Occupational Exposure Limits (English)

- **Diborane (Diborane):**
 - 0.1

Canada - Nova Scotia Occupational Exposure Limits

- **Diborane (Diborane):**
 - 0.1

US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)

- **Boron and Compounds:**
 - 0.01

EMERGENCY EXPOSURE LIMITS

<table>
<thead>
<tr>
<th>Material</th>
<th>Revised IDLH Value (mg/m3)</th>
<th>Revised IDLH Value (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sodium hydroxide</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>diborane</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TLV Basis:
- **Upper respiratory tract irritation; headache**

MATERIAL DATA

DIBORANE:
- Odour Threshold Value: 1.8-3.5 ppm
- IDLH Level: 15 ppm

While the primary toxic effect of diborane involves the lungs, neurological effects may also occur. The recommended TLV-TWA is thought to prevent risk of acute poisoning of the lung and cumulative effects on the nervous system.

HYDROGEN:
- Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory...
irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast, the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA. OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

ES TWA: simple asphyxiant TLV TWA: simple asphyxiant. Simple asphyxiants are gases which, when present in high concentrations, reduce the oxygen content in air below that required to support breathing, consciousness and life; i.e. loss of consciousness, with death by suffocation may rapidly occur in an oxygen deficient atmosphere. CARE: Most simple asphyxiants are odorless and there is no warning on entry into an oxygen deficient atmosphere If there is any doubt, oxygen content can be checked simply and quickly. It may not be appropriate to only recommend an exposure standard for simple asphyxiants rather it is essential that sufficient oxygen be maintained. Air normally has 21 percent oxygen by volume, with 18 percent regarded as minimum under normal atmospheric pressure to maintain consciousness / life. At pressures significantly higher or lower than normal atmospheric pressure, expert guidance should be sought.

SODIUM HYDROXIDE:

- for sodium hydroxide:
The TLV-C is recommended based on concentrations that produce noticeable but not excessive, ocular and upper respiratory tract irritation.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE
- Chemical goggles.
- Full face shield.
- Contact lenses pose a special hazard; soft contact lenses may absorb irritants and all lenses concentrate them.

HANDS/FEET
- Elbow length PVC gloves.
- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as: frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739),
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER
- Overalls.
- Eyewash unit.
- Barrier cream.
- Skin cleansing cream.
- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets), non sparking safety footwear.

- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory . These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR
<table>
<thead>
<tr>
<th>Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x PEL</td>
<td>P1</td>
<td>-</td>
<td>PAPR-P1</td>
</tr>
<tr>
<td></td>
<td>Air-line*</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>50 x PEL</td>
<td>Air-line**</td>
<td>P2</td>
<td>PAPR-P2</td>
</tr>
<tr>
<td>100 x PEL</td>
<td>-</td>
<td>P3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air-line*</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>100+ x PEL</td>
<td>-</td>
<td>-</td>
<td>PAPR-P3</td>
</tr>
</tbody>
</table>

- Negative pressure demand
- Continuous flow

Explanation of Respirator Codes:

- Class 1 low to medium absorption capacity filters.
- Class 2 medium absorption capacity filters.
- Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives.

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:
 - (a): particle dust respirators, if necessary, combined with an absorption cartridge;
 - (b): filter respirators with absorption cartridge or canister of the right type;
 - (c): fresh-air hoods or masks
- Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

<table>
<thead>
<tr>
<th>Type of Contaminant</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>1.25 m/s (200-500 f/min.)</td>
</tr>
<tr>
<td>grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion)</td>
<td>2.5-10 m/s (500-2000 f/min.)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

1: Room air currents minimal or favorable to capture
2: Contaminants of low toxicity or of nuisance value only
3: Intermittent, low production.
4: Large hood or large air mass in motion

1: Disturbing room air currents
2: Contaminants of high toxicity
3: High production, heavy use
4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

<table>
<thead>
<tr>
<th>State</th>
<th>Molecular Weight</th>
<th>Melting Range (°F)</th>
<th>Viscosity</th>
<th>Boiling Range (°F)</th>
<th>Solubility in water (g/L)</th>
<th>Flash Point (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td>Divided solid</td>
<td>96.8-98.6</td>
<td>Not Applicable</td>
<td>932 (decomposes)</td>
<td>Reacts</td>
<td>Not available.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p. H (1% solution)</td>
</tr>
</tbody>
</table>

pH (1% solution) > 7
Decomposition Temp (°F) Not Available pH (as supplied) Not applicable
Autoignition Temp (°F) Not available Vapour Pressure (mmHG) Not available
Upper Explosive Limit (%) Not available Specific Gravity (water=1) 1.07
Lower Explosive Limit (%) Not available Relative Vapor Density (air=1) 1.3
Volatile Component (%vol) Not available Evaporation Rate Not available

APPEARANCE
White crystalline, odourless, powder; mixes with water, ammonia, amines, pyridine and dimethyl ether of diethylene glycol; immiscible with other ethers, hydrocarbons and alkyl chlorides. Hygroscopic; stable in dry air to 300 deg C., decomposes slowly in moist air or in vacuum at 400 deg C. Reacts with water to evolve hydrogen and sodium hydroxide. Heat decomposes it to release hydrogen gas. May react slowly or rapidly with acids or certain transition metal catalysts to liberate hydrogen.

SECTION 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY
- Presence of incompatible materials
- May heat spontaneously
- Identify and remove sources of ignition and heating.
- Incompatible material, especially oxidizers, and/or other sources of oxygen may produce unstable product(s).
- Avoid sources of water contamination (e.g. rain water, moisture, high humidity).
- Avoid contact with oxygenated solvents/ reagents such as alcohols.

STORAGE INCOMPATIBILITY
- Sodium borohydride:
 - reacts with water, steam, moist air, alcohols, glycols, phenols, cresols, palladium dust, to produce flammable hydrogen gas
 - reacts violently with acids, forming diborane gas, with the possibility of explosion
 - reacts violently with oxidisers, dimethylformamide, aldehydes, ketones, metal powders, metal salts, sodium hydroxide
 - may polymerise on contact with bases, acrylonitrile,
 - forms explosive materials which are ultra-sensitive to friction or shock, and moisture sensitive with salts of ruthenium
 - attacks metals
 - corrodes glass slowly

NOTES:
- Mixing of solid sodium borohydride with charcoal in air promotes oxidation to produce a self-heating reaction that may result in the ignition of charcoal and in the production of hydrogen through thermal decomposition of sodium borohydride.
- Sodium borohydride in dimethylformamide (DMF) will undergo runaway thermal reactions resulting in violent decompositions. An induction period is normally involved and is temperature dependent (45 hours at 62 deg C and 45 minutes at 90 deg C). The temperature may reach trimethylamine (a reaction byproduct) autoignition temperature (190 deg C).
- The addition of supported noble metal catalysts to solutions containing sodium borohydride can result in ignition of limited hydrogen gas.
- Reduction of ruthenium salt solutions with borohydride solutions, to give a metal or alloy, may also produce other solid products which when dried, may explode when disturbed by spatula (for example).
- Contact with acids produces toxic fumes

For diborane:
- Interaction with aluminium or lithium with diborane gives complex hydrides which may ignite in air.
- Mixtures with oxygen at 105-165 deg C explode spontaneously after an induction period dependent on temperature and pressure.
- Interaction with trivinyllead is explosively violent at ambient temperatures.
- Diborane reacts slowly with Br2 and explosively with Cl2 to form boron halides.
- Diborane reacts with ammonia to form diboron diammoniate.
- Diborane is an endothermic gas which ignites in air. Ignition delays of 3-5 days followed by violent explosions have been reported. Presence of nitrogen or helium are not effective in suppressing explosion with the oxygen limiting value being 1.3%.
- NOTE: Presence of contaminants may lower the ignition temperature so that ignition or detonation of diborane(6)-air mixtures may occur at or below room temperature.

Metals and their oxides or salts may react violently with chlorine trifluoride. Chlorine trifluoride is a hypergolic oxidizer. It ignites on contact (without external source of heat or ignition) with recognized fuels - contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce ignition. The state of subdivision may affect the results.
- Reacts with metals producing flammable / explosive hydrogen gas
- Inorganic reducing agents react with oxidizing agents to generate heat and products that may be flammable, combustible, or otherwise reactive. Their reactions with oxidizing agents may be violent.
- Incidents involving interaction of active oxidants and reducing agents, either by design or accident, are usually very energetic and examples of so-called redox reactions.

Segregate from alcohol, water.
- NOTE: May develop pressure in containers; open carefully. Vent periodically.

For incompatible materials - refer to Section 7 - Handling and Storage.

SECTION 11 - TOXICOLOGICAL INFORMATION

sodium borohydride

TOXICITY AND IRRITATION
- unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Water and pH. In nature, boron is generally found in its oxygenated form. In aqueous solution, boron is normally present as B(OH)_4^- ion, B(OH)_4-. In concentrated solutions, boron may polymerise, leading to the formation of complex and diverse molecular compounds on the surfaces of minerals.

Environmental fate:

For boron and borates:

- Aquatic processes (such as oxidation and the presence of acids or bases) may transform insoluble metals to more soluble ionic forms. Microbiological processes may also transform insoluble metals to more soluble forms. Such ionic species may bind to dissolved ligands or sorb to solid particles in aquatic or aqueous media. A significant proportion of dissolved/sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms. When released to dry soil most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/or surface water ecosystems when soaked by rain or melt ice.

- Environmental processes may also be important in changing solubilities.

- Even though many metals show few toxic effects at physiological pHs, transformation may introduce new or magnified effects. A metal ion is considered infinitely persistent because it cannot degrade further.

- The current state of science does not allow for an unambiguous interpretation of various measures of bioaccumulation.

- The counter-ion may also create health and environmental concerns once isolated from the metal. Under normal physiological conditions the counter-ion may be essentially insoluble and may not be bioavailable. Environmental processes may enhance bioavailability.

For sodium borohydride:

- Not discharge into sewer or waterways.

- Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air. Once released to surface waters and moist soils their fate depends on solubility and dissociation in water.

- Waterborne boron may be adsorbed by soils and sediments. Adsorption-desorption reactions are expected to be the only significant mechanism that will influence the fate of boron in water. The extent of boron adsorption depends on the pH of the water and the chemical composition of the soil. The greatest adsorption is generally observed at pH 7.5-9.0. The single most important property of soil that influences the mobility of boron is the abundance of amorphous aluminium oxide. The extent of boron adsorption has also been attributed to the levels of iron oxide, and to a lesser extent, the organic matter present in the soil, although other studies found that the amount of organic matter present was not important. The adsorption of boron may not be reversible in some soils. The lack of reversibility may be the result of solid-phase formation on mineral surfaces and/or the slow release of boron by diffusion from the interior of clay minerals.

- It is unlikely that boron is bioconcentrated significantly by organisms from water. A bioconcentration factor (BCF) relates the concentration of a chemical in the tissues of aquatic and terrestrial animals or plants to the concentration of the chemical in water or soil. The BCFs of boron in marine and freshwater plants, fish, and invertebrates were estimated to be <100. Experimentally measured BCFs for fish have ranged from 62 to 198. These BCFs suggest that boron is not significantly bioconcentrated.

- As an element, boron itself cannot be degraded in the environment; however, it may undergo various reactions that change the form of boron (e.g., precipitation, polymerization, and acid-base reactions) depending on conditions such as its concentration in water and pH. In nature, boron is generally found in its oxygenated form. In aqueous solution, boron is normally present as

<table>
<thead>
<tr>
<th>Designation</th>
<th>US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs) - Skin</th>
<th>US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs (CRELs) - Skin</th>
<th>US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants - Skin</th>
<th>US - Hawaii Air Contaminant Limits - Skin Designation</th>
<th>US - California Permissible Exposure Limits for Chemical Contaminants - Skin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation</td>
<td>Skin X</td>
<td>Skin X</td>
<td>Skin Designation X</td>
<td>Skin Designation X</td>
<td>Skin X</td>
</tr>
</tbody>
</table>

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

SODIUM HYDROXIDE:

DO NOT discharge into sewer or waterways.

SODIUM BOROHYDRIDE:

- Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air. Once released to surface waters and moist soils their fate depends on solubility and dissociation in water.

- Waterborne boron may be adsorbed by soils and sediments. Adsorption-desorption reactions are expected to be the only significant mechanism that will influence the fate of boron in water. The extent of boron adsorption depends on the pH of the water and the chemical composition of the soil. The greatest adsorption is generally observed at pH 7.5-9.0. The single most important property of soil that influences the mobility of boron is the abundance of amorphous aluminium oxide. The extent of boron adsorption has also been attributed to the levels of iron oxide, and to a lesser extent, the organic matter present in the soil, although other studies found that the amount of organic matter present was not important. The adsorption of boron may not be reversible in some soils. The lack of reversibility may be the result of solid-phase formation on mineral surfaces and/or the slow release of boron by diffusion from the interior of clay minerals.

- It is unlikely that boron is bioconcentrated significantly by organisms from water. A bioconcentration factor (BCF) relates the concentration of a chemical in the tissues of aquatic and terrestrial animals or plants to the concentration of the chemical in water or soil. The BCFs of boron in marine and freshwater plants, fish, and invertebrates were estimated to be <100. Experimentally measured BCFs for fish have ranged from 62 to 198. These BCFs suggest that boron is not significantly bioconcentrated.

- As an element, boron itself cannot be degraded in the environment; however, it may undergo various reactions that change the form of boron (e.g., precipitation, polymerization, and acid-base reactions) depending on conditions such as its concentration in water and pH. In nature, boron is generally found in its oxygenated form. In aqueous solution, boron is normally present as
Boric acid and borate ions, with the dominant form of inorganic boron in natural aqueous systems as undissociated boric acid. Boric acid acts as an electron acceptor in aqueous solution, accepting an hydroxide ion from water to form (B(OH)4)-ion. In dilute solution, the favored form of boron is B(OH)4. In more concentrated solutions (>0.1 M boric acid) and at neutral to alkaline pH (6–11), polymeric species are formed (e.g., B3O3(OH)4-, B5O6(OH)4-, B3O3(OH)52-, and B4O5(OH)42-).

Most boron compounds are transformed to borates in soil due to the presence of moisture. Borates themselves are not further degraded in soil. However, borates can exist in a variety of forms in soil. Borates are removed from soils by water leaching and by assimilation by plants.

The most appreciable boron exposure to the general population is likely to be ingestion of food and to a lesser extent in water. As boron is a natural component of the environment, individuals will have some exposure from foods and drinking water. Boron-containing salts (borates) are ubiquitous in the environment. Surface soil, unpolluted waterways and seawater all typically contain significant amounts of boron as borate. Boron is an essential micronutrient for healthy growth of plants, however, it can be harmful to boron sensitive plants in higher quantities. In some areas such as the American Southwest, boron occurs naturally in surface waters in concentrations that have been shown to be toxic to commercially important plants.

Based on the collected information regarding aquatic toxicity, boron is not regarded as dangerous to aquatic organisms. The concentration in treated municipal waste water is a factor 100 lower than the NOEC-value for Daphnia magna.

No quality criteria exist for the concentration of boron in soil and compost. Boron is added to farmland when sewage sludge is applied as a soil improving agent, but there is not sufficient data to evaluate its effect on soil organisms. Being an essential micro-nutrient, no adverse effects of boron are expected at low concentrations.

Ecotoxicity:
In aquatic environments low concentrations of borates generally promote the growth of algae, whereas higher concentrations inhibited algal growth. In a growth inhibition test with Scenedesmus subspicatus, an EC50 value of 34 mg B/l was determined. Boric acid toxicity in Daphnia 48 h-LC50 (static test) was found to be 95 mg B/l. In a separate study it was concluded that chronic effects of boron to Daphnia may occur at a concentration of >10 mg/l.

The toxicity of boron in fish is often higher in soft water than in hard water. The acute toxicity of boron towards Danio rerio (96 h-LC50) has been determined to 14.2 mg B/l. In a fish early life stage test with rainbow trout NOEC levels of boron have been determined in the range between 0.009 and 0.103 mg B/l, whereas the EC50 ranged from 27 to 100 mg B/l dependent on the water hardness.

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions
A. General Product Information
Reactivity characteristic: use EPA hazardous waste number D003 (waste code R).

Disposal Instructions
All waste must be handled in accordance with local, state and federal regulations. Puncture containers to prevent re-use and bury at an authorized landfill. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate:
• Reduction
• Reuse
• Recycling
• Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

Recycle wherever possible.
Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Dissolve in large volume of water. Carefully add a dilute solution of acetic acid or acetone. Provision should be made t

Section 14 - TRANSPORTATION INFORMATION

DOT:
Symbols: None Hazard class or Division: 4.3
Identification Numbers: UN1426 PG: I
sodium borohydride (CAS: 16940-66-2) is found on the following regulatory lists:

- "Canada Domestic Substances List (DSL)"
- "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)"
- "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (French)"
- "IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk"
- "OECD Representative List of High Production Volume (HPV) Chemicals"
- "US - California Permissible Exposure Limits"
- "US - California Occupational Safety and Health Regulations (CAL/OSHA) - Hazardous Substances"
- "US - California Toxin Substances Control Act (TSCA) - Inventory"
- "US - California Air Toxics "Hot Spots" List (Assembly Bill 2588) Substances for which emissions must be Unless Otherwise Specified, in Accordance with GMP"

hydrogen (CAS: 1333-74-0) is found on the following regulatory lists:

- "US - California Permissible Exposure Limits for Chemical Contaminants"
- "US - Massachusetts Oil & Hazardous Material List"
- "US - Minnesota Hazardous Substance List"
- "US - New Jersey Right to Know Hazardous Substances"
- "US - Oregon Permissible Exposure Limits (21st Edition)"
- "US - Pennsylvania - Hazardous Substance List"
- "US - Rhode Island Hazardous Substance List"
- "US - Washington Permissible exposure limits of air contaminants"
- "US - ACGIH Threshold Limit Values (TLV)"
- "US - Department of Homeland Security Chemical Facility Anti-Terrorism Standards - Chemicals of Interest"
- "US - DOE Temporary Emergency Exposure Limits (TEELs)"
- "US - EPA High Production Volume Chemicals Additional List"
- "US - FDA Indirect Food Additives: Adhesives and Components of Coatings - Substances for Use Only as Components of Adhesives, Coatings and Related Uses" A List of Lists - Consolidated List of Chemicals Subj ect to the Emergency Planning and Community Right-to-Know Act (EPCRA) and Section 112(r) of the Clean Air Act"
- "US - OSHA Hazardous Substances List"
- "US - Occupational Safety and Health Regulations (OSHA)"
- "US - Oil & Hazardous Material List"
- "US - Oregon Permissible Exposure Limits (21st Edition)"
- "US - Oregon Toxic Substances Control Act (TSCA) - Inventory"
- "US - TSCA Section 8 (a) Inventory Update Rule (IUR) - Partial Exemptions"

sodium hydroxide (CAS: 1310-73-2) is found on the following regulatory lists:

- "Canada - Alberta Occupational Exposure Limits"
- "Canada - British Columbia Occupational Exposure Limits"
- "Canada - Nova Scotia Occupational Exposure Limits"
- "Canada - Ontario Occupational Exposure Limits"
- "Canada - Prince Edward Island Occupational Exposure Limits"
- "Canada - Saskatchewan Industrial Hazardous Substances"
- "Canada - Yukon Permissible Concentrations for Airborne Contaminants"
- "Canada Domestic Substances List (DSL)"
- "Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits"
- "Codex General Standard for Food Additives (GSFA) - Additives Permitted for Use in Food in General, Unless Otherwise Specified, in Accordance with GMP"
- "GESAMP/EHS Composite List - GESAMP Hazard Profiles"
- "IMO IBC - WHMIS (French)"
- "IMO IBC - WHMIS (English)"
- "OECD Representative List of High Production Volume (HPV) Chemicals"
- "US - Alaska Limits for Air Contaminants"
- "US - California Air Toxics "Hot Spots" List (Assembly Bill 2588) Substances for which emissions must be
The document is a regulatory list of hazardous substances. It mentions various regulatory lists such as US OSHA Permissible Exposure Limits, US CWA (Clean Water Act) - List of Hazardous Substances, and others. It states that diborane (CAS: 19287-45-7) is found on several of these regulatory lists.

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Cumulative effects may result following exposure.
- * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEM CALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.
- A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Jul-17-2009
Print Date: Apr-22-2010