Aluminum oxide

Material Safety Data Sheet

sc-217616

Hazard Alert Code
Key:

EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Aluminum oxide

STATEMENT OF HAZARDOUS NATURE

NFPA

SUPPLIER
Company: Santa Cruz Biotechnology, Inc.
Address:
2145 Delaware Ave
Santa Cruz, CA 95060
Telephone: 800.457.3801 or 831.457.3800
Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305
Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCELL) or call +613 9573 3112

PRODUCT USE
Used as an adsorbent, desiccant. As a filler in paints & adhesives. In the manufacture of alloys, ceramics, electrical insulators, resistors, dental cements, glass. As an abrasive and in metal polishes. In the manufacture of artificial gems, in coatings for metals. Gamma alumina - as a catalyst / catalyst support; used in chromatography.

SYNONYMS

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW
RISK

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
- The material has NOT been classified as "harmful by ingestion". This is because of the lack of corroborating animal or
human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, unintentional ingestion is not thought to be cause for concern.

EYE
- Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body sensation in certain individuals.

SKIN
- The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Contact with aluminas (aluminium oxides) may produce a form of irritant dermatitis accompanied by pruritus. Though considered non-harmful, slight irritation may result from contact because of the abrasive nature of the aluminium oxide particles.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
- The material is not thought to produce respiratory irritation (as classified using animal models). Nevertheless inhalation of dusts, or fume, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.
- Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
- The inhalation of small particles of metal oxide results in sudden thirst, a sweet, metallic our foul taste, throat irritation, cough, dry mucous membranes, tiredness and general unwellness. Headache, nausea and vomiting, fever or chills, restlessness, sweating, diarrhea, excessive urination and prostration may also occur. After exposure is removed, recovery occurs within 24–36 hours.

CHRONIC HEALTH EFFECTS
- Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.
- Chronic exposure to aluminas (aluminium oxides) of particle size 1.2 microns did not produce significant systemic or respiratory system effects in workers.

When hydrated aluminas were injected intratracheally, they produced dense and numerous nodules of advanced fibrosis in rats, a reticulin network with occasional collagen fibres in mice and guinea pigs, and only a slight reticulin network in rabbits. Shaver’s disease, a rapidly progressive and often fatal interstitial fibrosis of the lungs, is associated with a process involving the fusion of bauxite (aluminium oxide) with iron, coke and silica at 2000 deg. C.

The weight of evidence suggests that catalytically active alumina and the large surface area aluminas can induce lung fibrosis(aluminosis) in experimental animals, but only when given by the intra-tracheal route. The pertinence of such experiments in relation to workplace exposure is doubtful especially since it has been demonstrated that the most reactive of the aluminas (i.e. the chi and gamma forms), when given by inhalation, are non-fibrogenic in experimental animals. However rats exposed by inhalation to refractory aluminium fibre showed mild fibrosis and possibly carcinogenic effects indicating that fibrous aluminas might exhibit different toxicology to non-fibrous forms. Aluminium oxide fibres administered by the intrapleural route produce clear evidence of carcinogenicity.

Saffil fibre an artificially produced form alumina fibre used as refractories, consists of over 95% alumina, 3-4 % silica. Animal tests for fibrogenic, carcinogenic potential and oral toxicity have included in-vitro, intraperitoneal injection, intrapleural injection, inhalation, and feeding. The fibre has generally been inactive in animal studies. Also studies of Saffil dust clouds show very low respirable fraction.

There is general agreement that particle size determines that the degree of pathogenicity (the ability of a micro-organism to produce infectious disease) of elementary aluminium, or its oxides or hydroxides when they occur as dusts, fumes or vapours. Only those particles small enough to enter the alveoli (sub 5 um) are able to produce pathogenic effects in the lungs. Exposure to large doses of Aluminium has been connected with the degenerative brain disease Alzheimer's Disease.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability:</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Toxicity:</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact:</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Reactivity:</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Chronic:</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

NAME	CAS RN	%
aluminium oxide | 1344-28-1 | > 98 |
impurities as | | |
silicon (expressed as silicon dioxide) | < 0.12 |
iron (expressed as ferric oxide) | < 0.05* |
sodium (expressed as sodium oxide) | < 0.50* |
total water | < 1.0 |
Section 4 - FIRST AID MEASURES

SWALLOWED
- Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Center or a doctor.

EYE
- If this product comes in contact with the eyes:
 - Wash out immediately with fresh running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - If pain persists or recurs seek medical attention.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN
- If skin or hair contact occurs:
 - Flush skin and hair with running water (and soap if available).
 - Seek medical attention in event of irritation.

INHALED
- If fumes or combustion products are inhaled remove from contaminated area.
 - Lay patient down. Keep warm and rested.
 - Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
 - Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
 - Transport to hospital, or doctor.

NOTES TO PHYSICIAN
- Treat symptomatically.
 - Manifestation of aluminum toxicity include hypercalcemia, anemia, Vitamin D refractory osteodystrophy and a progressive encephalopathy (mixed dysarthria-apraxia of speech, asterixis, tremulousness, myoclonus, dementia, focal seizures). Bone pain, pathological fractures and proximal myopathy can occur.
 - Symptoms usually develop insidiously over months to years (in chronic renal failure patients) unless dietary aluminum loads are excessive.
 - Serum aluminum levels above 60ug/ml indicate increased absorption. Potential toxicity occurs above 100 ug/ml and clinical symptoms are present when levels exceed 200 ug/ml.
 - Deferoxamine has been used to treat dialysis encephalopathy and osteomalacia. CaNa2EDTA is less effective in chelating aluminum. [Ellenhorn and Barceloux: Medical Toxicology]

Copper, magnesium, aluminum, antimony, iron, manganese, nickel, zinc (and their compounds) in welding, galvanizing or smelting operations all give rise to thermally produced particulates of smaller dimension than might be produced if the metals are divided mechanically. Where insufficient ventilation or respiratory protection is available these particulates may produce "metal fume fever" in workers from an acute or long term exposure.
- Onset occurs in 4-6 hours generally on the evening following exposure. Tolerance develops in workers but may be lost over the weekend. (Monday Morning Fever)
- Pulmonary function tests may indicate reduced lung volumes, small airway obstruction and decreased carbon monoxide diffusing capacity but these abnormalities resolve after several months.
- Although mildly elevated urinary levels of heavy metal may occur they do not correlate with clinical effects.
- The general approach to treatment is recognition of the disease, supportive care and prevention of exposure.
- Seriously symptomatic patients should receive chest x-rays, have arterial blood gases determined and be observed for the development of tracheobronchitis and pulmonary edema.
[Ellenhorn and Barceloux: Medical Toxicology].

Section 5 - FIRE FIGHTING MEASURES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapour Pressure (mmHG)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>3.7</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

EXTINGUISHING MEDIA
- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

FIRE FIGHTING
- Alert Emergency Responders and tell them location and nature of hazard.
 - Wear breathing apparatus plus protective gloves for fire only.
 - Prevent, by any means available, spillage from entering drains or water course.
 - Use fire fighting procedures suitable for surrounding area.
 - Do not approach containers suspected to be hot.
 - Cool fire exposed containers with water spray from a protected location.
 - If safe to do so, remove containers from path of fire.
 - Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
- Non combustible.
- Not considered to be a significant fire risk, however containers may burn. Decomposition may produce toxic fumes of: metal oxides. When aluminium oxide dust is dispersed in air, firefighters should wear protection against inhalation of dust particles, which can also contain hazardous substances from the fire absorbed on the alumina particles. May emit poisonous fumes.

FIRE INCOMPATIBILITY
- None known.

PERSONAL PROTECTION
- Glasses: Chemical goggles.
- Gloves:
- Respirator: Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS
- Moderate hazard.
- CAUTION: Advise personnel in area.
- Alert Emergency Responders and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)
- AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.
- AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.
- AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

RECOMMENDED STORAGE METHODS
- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.
STORAGE REQUIREMENTS
- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

<table>
<thead>
<tr>
<th>X: Must not be stored together</th>
<th>O: May be stored together with specific preventions</th>
<th>+: May be stored together</th>
</tr>
</thead>
</table>

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Peak ppm</th>
<th>Peak mg/m³</th>
<th>TWA F/CC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada - Ontario Occupational Exposure Limits</td>
<td>aluminium oxide (alpha-Alumina (total dust))</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>US - Minnesota Permissible Exposure Limits (PELs)</td>
<td>aluminium oxide (alpha-Alumina - Total dust)</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>US - Minnesota Permissible Exposure Limits (PELs)</td>
<td>aluminium oxide (alpha-Alumina - Respirable fraction)</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Canada - Alberta Occupational Exposure Limits</td>
<td>aluminium oxide (Alumina (Aluminum oxide))</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)</td>
<td>aluminium oxide (Aluminium oxide (as Al))</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z1</td>
<td>aluminium oxide (alpha-Alumina - Total dust)</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z1</td>
<td>aluminium oxide (alpha-Alumina - Respirable fraction)</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>US - Idaho - Limits for Air Contaminants</td>
<td>aluminium oxide (alpha-Alumina Total dust)</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants</td>
<td>aluminium oxide (alpha-Alumina - Respirable fraction)</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants</td>
<td>aluminium oxide (alpha-Alumina - Total dust)</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants</td>
<td>aluminium oxide (alpha-Alumina - Respirable fraction)</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants</td>
<td>aluminium oxide (alpha-Alumina Total dust)</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>US - Idaho - Limits for Air Contaminants</td>
<td>aluminium oxide (alpha-Alumina Respirable fraction)</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants</td>
<td>aluminium oxide (alpha-Alumina Total dust)</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Location</td>
<td>Compound Description</td>
<td>Limits (in mg/m³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants</td>
<td>aluminium oxide (alpha-Alumina Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits</td>
<td>aluminium oxide (Aluminum oxide)</td>
<td>10 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Hawaii Air Contaminant Limits</td>
<td>aluminium oxide (Alumina - Total dust)</td>
<td>10 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Hawaii Air Contaminant Limits</td>
<td>aluminium oxide (Alumina - Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Washington Permissible exposure limits of air contaminants</td>
<td>aluminium oxide (alpha-Alumina (Aluminum oxide) - Respirable fraction)</td>
<td>5 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances</td>
<td>aluminium oxide (Alundum (Al2O3))</td>
<td>(See Table 11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances</td>
<td>aluminium oxide ((Corundum (Al2O3))</td>
<td>(See Table 11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Alaska Limits for Air Contaminants</td>
<td>aluminium oxide (alpha-Alumina - Total dust)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Oregon Permissible Exposure Limits (Z1)</td>
<td>aluminium oxide (alpha-Alumina Respirable Fraction)</td>
<td>5 *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants</td>
<td>aluminium oxide (alpha-Alumina - Total dust)</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants</td>
<td>aluminium oxide (alpha-Alumina - Respirable fraction)</td>
<td>5 *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Oregon Permissible Exposure Limits (Z1)</td>
<td>aluminium oxide (alpha-Alumina Total Dust)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Alaska Limits for Air Contaminants</td>
<td>aluminium oxide (alpha-Alumina - Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Michigan Exposure Limits for Air Contaminants</td>
<td>aluminium oxide (alpha-Alumina (aluminum oxide) - Total dust)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Michigan Exposure Limits for Air Contaminants</td>
<td>aluminium oxide (alpha-Alumina (aluminum oxide) - Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US ACGIH Threshold Limit Values (TLV)</td>
<td>aluminium oxide (Aluminum - Insoluble compounds)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Prince Edward Island Occupational Exposure Limits</td>
<td>aluminium oxide (Aluminum - Insoluble compounds)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Nova Scotia Occupational Exposure Limits</td>
<td>aluminium oxide (Aluminum - Insoluble compounds)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - British Columbia Occupational Exposure Limits</td>
<td>aluminium oxide (Aluminum metal and insoluble compounds, Respirable, Revised 2008)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Northwest Territories Occupational Exposure Limits (English)</td>
<td>aluminium oxide (Aluminum metal & oxide)</td>
<td>10 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US ACGIH Threshold Limit Values (TLV)</td>
<td>aluminium oxide (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TLV Basis:
- Pneumoconiosis;
- lower respiratory tract irritation;
- neurotoxicity
US ACGIH Threshold Limit Values (TLV)

<table>
<thead>
<tr>
<th>Material Data</th>
<th>Aluminium Oxide (Particles (Insoluble or Poorly Soluble) [NOS] Respirable particles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US ACGIH Threshold Limit Values (TLV)</td>
<td>3</td>
</tr>
<tr>
<td>Canada - British Columbia Occupational Exposure Limits</td>
<td>aluminium oxide (Particles (Insoluble or Poorly Soluble) Not Otherwise Classified (PNOC))</td>
</tr>
<tr>
<td>Canada - Prince Edward Island Occupational Exposure Limits</td>
<td>aluminium oxide (Particles (Insoluble or Poorly Soluble) [NOS] Respirable particles)</td>
</tr>
<tr>
<td>Canada - Nova Scotia Occupational Exposure Limits</td>
<td>aluminium oxide (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)</td>
</tr>
<tr>
<td>Canada - Nova Scotia Occupational Exposure Limits</td>
<td>aluminium oxide (Particles (Insoluble or Poorly Soluble) [NOS] Respirable particles)</td>
</tr>
<tr>
<td>Canada - Prince Edward Island Occupational Exposure Limits</td>
<td>aluminium oxide (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)</td>
</tr>
</tbody>
</table>

MATERIAL DATA

ALUMINIUM OXIDE:
- The TLV is based on the exposures to aluminum chloride and the amount of hydrolyzed acid and the corresponding acid TLV to provide the same degree of freedom from irritation. Workers chronically exposed to aluminum dusts and fumes have developed severe pulmonary reactions including fibrosis, emphysema and pneumothorax. A much rarer encephalopathy has also been described.
- For aluminium oxide:
 - The experimental and clinical data indicate that aluminium oxide acts as an "inert" material when inhaled and seems to have little effect on the lungs nor does it produce significant organic disease or toxic effects when exposures are kept under reasonable control.
 - [Documentation of the Threshold Limit Values], ACGIH, Sixth Edition.

PERSONAL PROTECTION

EYE
- Safety glasses with side shields
- Chemical goggles
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them.

HANDS/FEET
- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
 - frequency and duration of contact,
 - chemical resistance of glove material,
 - glove thickness and dexterity
- Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
 - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
 - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
 - Contaminated gloves should be replaced.
- Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
- Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.
 - polychloroprene
 - nitrile rubber
 - butyl rubber
 - fluorocautchouc
 - polyvinyl chloride
- Gloves should be examined for wear and/ or degradation constantly.

OTHER
- Overalls.
- P.V.C. apron.
RESPIRATOR

<table>
<thead>
<tr>
<th>Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x PEL</td>
<td>Air-line*</td>
<td>-</td>
<td>PAPR-P1</td>
</tr>
<tr>
<td>50 x PEL</td>
<td>Air-line**</td>
<td>P2</td>
<td>PAPR-P2</td>
</tr>
<tr>
<td>100 x PEL</td>
<td>-</td>
<td>P3</td>
<td>-</td>
</tr>
<tr>
<td>100+ x PEL</td>
<td>-</td>
<td>Air-line*</td>
<td>PAPR-P3</td>
</tr>
</tbody>
</table>

- * - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

- Class 1 low to medium absorption capacity filters.
- Class 2 medium absorption capacity filters.
- Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge:

- Type A for use against certain organic gases and vapors.
- Type AX for use against low boiling point organic compounds (less than 65°C).
- Type B for use against certain inorganic gases and other acid gases and vapors.
- Type E for use against sulfur dioxide and other acid gases and vapors.
- Type K for use against ammonia and organic ammonia derivatives.

ENGINEERING CONTROLS

- Local exhaust ventilation usually required. If risk of overexposure exists, wear an approved respirator. Correct fit is essential to obtain adequate protection and an approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:

- **Aerosols, fumes from pouring operations, intermittent container filling, low speed conveyor transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation):**
 - Air Speed: 0.5-1 m/s (100-200 f/min.)

- **Direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion):**
 - Air Speed: 1.25-2.5 m/s (250-500 f/min.)

- **Grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion):**
 - Air Speed: 2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

<table>
<thead>
<tr>
<th>Lower end of the range</th>
<th>Upper end of the range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Room air currents minimal or favorable to capture</td>
<td>1: Disturbing room air currents</td>
</tr>
<tr>
<td>2: Contaminants of low toxicity or of nuisance value only.</td>
<td>2: Contaminants of high toxicity</td>
</tr>
<tr>
<td>3: Intermittent, low production.</td>
<td>3: High production, heavy use</td>
</tr>
<tr>
<td>4: Large hood or large air mass in motion</td>
<td>4: Small hood-local control only</td>
</tr>
</tbody>
</table>

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction...
systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.
Does not mix with water.
Sinks in water.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Divided solid</td>
</tr>
<tr>
<td>Molecular Weight</td>
<td>101.96</td>
</tr>
<tr>
<td>Melting Range (°F)</td>
<td>3761.6</td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>5396</td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>Not available</td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Viscosity</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>Insoluble</td>
</tr>
<tr>
<td>pH (1% solution)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Vapour Pressure (mmHG)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>3.7</td>
</tr>
<tr>
<td>Evaporation Rate</td>
<td>Non volatile</td>
</tr>
</tbody>
</table>

APPEARANCE

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

- For aluminas (aluminium oxide):
 - Incompatible with hot chlorinated rubber.
 - In the presence of chlorine trifluoride may react violently and ignite.
 - May initiate explosive polymerisation of olefin oxides including ethylene oxide.
 - Produces exothermic reaction above 200 °C with halocarbons and an exothermic reaction at ambient temperatures with halocarbons in the presence of other metals.
 - Produces exothermic reaction with oxygen difluoride.
 - May form explosive mixture with oxygen difluoride.
 - Forms explosive mixtures with sodium nitrate.
 - Reacts vigorously with vinyl acetate.

Metals and their oxides or salts may react violently with chlorine trifluoride. Chlorine trifluoride is a hypergolic oxidizer. It ignites on contact (without external source of heat or ignition) with recognized fuels - contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce ignition. The state of subdivision may affect the results.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

TOXICITY AND IRRITATION

- No significant acute toxicological data identified in literature search.

CARCINOGEN

- Aluminum - Insoluble compounds
 - US ACGIH Threshold Limit Values (TLV) - Carcinogens
 - Carcinogen Category A4

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

ALUMINIUM OXIDE

- Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air.
- Once released to surface waters and moist soils their fate depends on solubility and dissociation in water. Environmental processes (such as oxidation and the presence of acids or bases) may transform insoluble metals to more soluble ionic forms. Microbiological processes may also transform insoluble metals to more soluble forms. Such ionic species may bind to dissolved ligands or sorb to solid particles in aquatic or aqueous media. A significant proportion of dissolved/sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms.
- When released to dry soil most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/ or surface water ecosystems when soaked by rain or melt ice. Environmental processes may also be important in changing solubilities.
- Even though many metals show few toxic effects at physiological pHs, transformation may introduce new or magnified effects.
A metal ion is considered infinitely persistent because it cannot degrade further. The current state of science does not allow for an unambiguous interpretation of various measures of bioaccumulation.

The counter-ion may also create heath and environmental concerns once isolated from the metal. Under normal physiological conditions the counter-ion may be essentially insoluble and may not be bioavailable.

Environmental processes may enhance bioavailability.

- For aluminium and its compounds and salts:
 - Environmental fate: Aluminium occurs in the environment in the form of silicates, oxides and hydroxides, combined with other elements such as sodium, fluoride and arsenic complexes with organic matter.
 - Acidification of soils releases aluminium as a transportable solution. Mobilisation of aluminium by acid rain results in aluminium becoming available for plant uptake.
 - As an element, aluminium cannot be degraded in the environment, but may undergo various precipitation or ligand exchange reactions. Aluminium in compounds has only one oxidation state (+3), and would not undergo oxidation-reduction reactions under environmental conditions. Aluminium can be complexed by various ligands in the environment (e.g., fulvic and humic acids). The solubility of aluminium in the environment will depend on the ligands present and the pH.
 - The trivalent aluminium ion is surrounded by six water molecules in solution. The hydrated aluminium ion, [Al(H2O)6]3+, undergoes hydrolysis, in which a stepwise deprotonation of the coordinated water ligands forms bound hydroxide ligands (e.g., [Al(H2O)(OH)2]2+, [Al(H2O)2(OH)2]2+). The speciation of aluminium in water is pH dependent. The hydrated trivalent aluminium ion on is the predominant form at pH values below 5. Between pH 5.5 and 6, the predominant species are Al(OH)+ and Al(OH)2+, while the solid Al(OH)3 is most prevalent between pH 5.2 and 8.6. The soluble species Al(OH)+ is the predominant species above pH 9, and is the only species present above pH 10. Polymeric aluminium hydroxides appear between pH 4.7 and 10.5, and increase in size until they are transformed into colloidal particles of amorphous Al(OH)3, which crystallise to gibbsite in the acid waters. Polymisation is affected by the presence of dissolved silica; when enough silica is present, aluminium is precipitated as poorly crystallised clay mineral species.

Hydroxyaluminium compounds are considered amphoteric (e.g., they can act as both acids and bases in solution). Because of this property, aluminium hydroxides can act as buffers and resist pH changes within the narrow pH range of 4-5.

Monomeric aluminium compounds, typified by aluminium fluoride, chloride, and sulfate, are considered reactive or labile compounds, whereas species react much more slowly in the environment. Aluminium has a stronger attraction for fluoride in an acidic environment compared to other inorganic ligand.

The adsorption of aluminium onto clay surfaces can be a significant factor in controlling aluminium mobility in the environment, and these adsorption reactions, measured in one study at pH 3.0-4.1, have been observed to be very rapid. However, clays may act either as a sink or a source for soluble aluminium depending on the degree of aluminium saturation on the clay surface. Within the pH range of 5-6, aluminium complexes with phosphate and is removed from solution. Because phosphate is a necessary nutrient in ecological systems, this immobilization of both aluminium and phosphate may result in depleted nutrient states in surface water.

Plant species and cultivars of the same species differ considerably in their ability to take up and translocate aluminium to above-ground parts. Leaves may contain very high concentrations of aluminium, >5,000 mg/kg in old leaves. Other plants that may contain high levels of aluminium include Lycopodium (Lycopodiaceae), a few ferns, Symposlocos (Symposlocaceae), and Orities (Protagaceae). aluminium is often taken up and concentrated in root tissue. In sub-alpine ecosystems, the large root biomass of the Douglas fir, Abies amabilis, takes up aluminium and immobilizes it, preventing large accumulation in above-ground parts. It is unclear to what extent aluminium is taken into root food crops and leafy vegetables. An uptake factor (concentration of aluminium in the plant/concentration of aluminium in soil) of 0.004 for leafy vegetables and 0.00065 for fruits and tubers has been reported, but the pH and plant species from which these uptake factors were derived are unclear. Based upon these values, however, it is clear that aluminium is not taken up in plants from soil, but is instead biodiluted.

Aluminium concentrations in rainbow trout from an alum-treated lake, an untreated lake, and a hatchery were highest in gill tissue and lowest in muscle. Aluminium residue analyses in brook trout have shown that whole-body aluminium content decreases as the fish advance from larvae to juveniles. These results imply that the aging larvae begin to decrease their rate of aluminium uptake, to eliminate aluminium at a rate that exceeds uptake, or to maintain approximately the same amount of aluminium while the body mass increases. The decline in whole-body aluminium residues in juvenile brook trout may be related to growth and dilution by edible muscle tissue that accumulated less aluminium than did the other tissues.

The greatest fraction of the gill-associated aluminium was not sorbed to the gill tissue, but to the gill mucus. It is thought that mucus appears to retard aluminium transport from solution to the membrane surface, thus delaying the acute biological response of the fish. It has been reported that concentrations of aluminium in whole-body tissue of the Atlantic salmon exposed to labile aluminium ranging from 3 µg/g (for fish exposed to 33 µg/L) to 96 µg/g (for fish exposed to 264 µg/L) at pH 5.5. After 60 days of exposure, BCfS ranged from 76 to 190 and were directly related to the aluminium exposure concentration. In acidic waters (pH 4.6-5.3) with low concentrations of calcium (0.5-1.5 mg Ca/L), labile aluminium between 25 and 75 µg/L is toxic. Because aluminium is toxic to many aquatic species, it is not bioaccumulated to a significant degree (BCF <300) in most fish and shellfish; therefore, consumption of contaminated fish does not appear to be a significant source of aluminium exposure in humans.

Bioconcentration of aluminium has also been reported for several aquatic invertebrate species. BCF values ranging from 0.13 to 0.5 in the whole-body were reported for the snail. Bioconcentration of aluminium has also been reported for aquatic insects.

Ecotoxicity:

- Freshwater species pH >6.5:
 - Fish: LC50 (48-96 h) 5 spp: 0.6 (Salmo salar) - 106 mg/L; Chronic NOEC (8-28 d): 7 spp.NOEC, 0.034-7.1 mg/L. The lowest measured chronic figure was an 8-d LC50 of 0.17 mg/L for Microperpus sp.
 - Amphibians: Acute LC50 (4 d): Bufo americanus, 0.86-1.66 mg/L; Chronic LC50 (8 d) 2.26 mg/L.
 - Crustacea: LC50 (48 h) 7 spp 2.3-36.9 mg/L; Chronic NOEC (28 d) 0.3 mg/L; Chronic LC50 (48 h) 0.13 mg/L.
 - Algae: EC50 (96 h): population growth, 0.46-0.57 mg/L; 2 spp, chronic NOEC, 0.8-2.0 mg/L.
 - Freshwater species pH <6.5 (all between pH 4.5 and 6.0):
 - Fish LC50 (24-96 h): 4 spp, 0.015 (S. trutta) - 4.2 mg/L; chronic data on Salmo trutta, LC50 (21-42 d) 0.015- 0.105 mg/L.
 - Amphibians LC50 (4-5 d): 2 spp, 0.540-2.670 mg/L (8 species) 0.40-5.2 mg/L.

Among freshwater aquatic plants, single-celled plants are generally the most sensitive to aluminium. Fish are generally more sensitive to aluminium than aquatic invertebrates. Aluminium is a gill toxicant to fish, causing both ionoregulatory and respiratory effects.

- The bioavailability and toxicity of aluminium is generally greater in acid solutions. Aluminium in acid habitats has been observed to be toxic to fish and phytoplankton. aluminium is generally more toxic over the pH range 4.4-5.4, with a maximum toxicity occurring around pH 5.0.5.2. The inorganic single unit aluminium species (Al(OH)2 +) is thought to be the most toxic. Under very acidic conditions, the toxic effects of the high H+ concentration appear to be more important than the effects of low concentrations of aluminium; at approximately neutral pH values, the toxicity of aluminium is greatly reduced. The solubility of aluminium is also enhanced under alkaline conditions, due to its amphoteric character, and some researchers found that the acute toxicity of aluminium increased from pH 7 to pH 9. However, the opposite relationship was found in other studies. The uptake and toxicity of aluminium in freshwater organisms generally decreases with increasing water hardness under acidic, neutral and alkaline conditions. Complexing agents such as fluoride, citrate and humic substances reduce the availability of aluminium to organisms, resulting in lower toxicity. Silicon can also reduce aluminium toxicity to fish.

- Drinking Water Standards:
Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations. Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible or consult manufacturer for recycling options.
- Consult Waste Management Authority for disposal.
- Bury residue in an authorized landfill.
- Recycle containers where possible, or dispose of in an authorized landfill.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

aluminium oxide (CAS: 1344-28-1) is found on the following regulatory lists;

- Canada - Alberta Occupational Exposure Limits
- Canada - Ontario Occupational Exposure Limits
- Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)
- Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits
- Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances
- Canada Domestic Substances List (DSL)
- Canada Ingredient Disclosure List (SOR/88-64)
- Canada National Pollutant Release Inventory (NPRI)
- Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)
- Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (French)
- International Council of Chemical Associations (ICCA) - High Production Volume List
- OECD Representative List of High Production Volume (HPV) Chemicals
- US - Alaska Limits for Air Contaminants
- US - California Air Toxics "Hot Spots" List (Assembly Bill 2588) Substances for which emissions must be quantified
- US - Hawaii Air Contaminant Limits
- US - Idaho - Limits for Air Contaminants
- US - Michigan Exposure Limits for Air Contaminants
- US - Minnesota Hazardous Substance List
- US - Minnesota Permissible Exposure Limits (PELs)
- US - New Jersey Right to Know Hazardous Substances
- US - Oregon Permissible Exposure Limits (Z1)
- US - Pennsylvania - Hazardous Substance List
- US - Rhode Island Hazardous Substance List
- US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants
- US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants
- US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants
- US - Washington Permissible exposure limits of air contaminants
- US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants
- US DOE Temporary Emergency Exposure Limits (TEELs)
- US EPA Section 313 Chemical List
- US FDA CFSAN Color Additive Status List 5
- US List of Lists - Consolidated List of Chemicals Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA) and Section 112(r) of the Clean Air Act
- US OSHA Permissible Exposure Levels (PELs) - Table Z1
- US Toxic Substances Control Act (TSCA) - Inventory

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Inhalation may produce health damage.
- Cumulative effects may result following exposure.

* (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.
Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Dec-16-2009
Print Date: Apr-21-2010