BACKGROUND
Membrane fusion is crucial for the entry, spread and formation of enveloped viruses, such as herpes simplex virus, and is mediated by envelope glycoproteins. Two serotypes of the herpes simplex virus, type-1 HSV-1 (oral) and type-2 HSV-2 (genital), have been shown to encode at least ten glycoproteins, four of which are necessary and sufficient to facilitate fusion. These four glycoproteins include Glycoprotein B (gB), Glycoprotein D (gD), Glycoprotein H (gH) and Glycoprotein L (gL). The fusion event is dependent upon the expression of a gD receptor on target cell membranes and does not require the presence of cell-surface glycosaminoglycans. gB is essential for viral growth as gB free virions are able to bind cells but not to synthesize virus-specific proteins upon infection. HSV-1 and HSV-2 gB exist as a homodimer which may be linked by disulfide bonds. HSV-1 gB is a 904 amino acid protein with an extracellular domain consisting of amino acids 31-730 and a cytoplasmic domain consisting of amino acids 796-904. HSV-2 gB also contains 904 amino acids, with amino acids 23-727 making up the extracellular domain and amino acids 793-904 making up the cytoplasmic domain.

REFERENCES

SOURCE
HSV-1 Glycoprotein B (vC-14) is an affinity purified goat polyclonal antibody raised against a peptide mapping at the C-terminus of Glycoprotein B of HSV-1 origin.

STORAGE
Store at 4°C. **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.