γ-crystallin (P-18): sc-22415

The Power to Question

BACKGROUND

Crystallins are the major proteins of the vertebrate eye lens, where they maintain the transparency and refractive index of the lens. Crystallins are divided into $\alpha,\,\beta,$ and γ families, and the β and γ -crystallins also comprise a superfamily. Crystallins usually contain seven distinctive protein regions, including four homologous motifs, a connecting peptide, and N- and C-terminal extensions. γ -crystallins are structural proteins in the lens, and they exist as monomers which typically lack connecting peptides and terminal extensions. The γ -crystallins include seven closely related proteins γ A, γ B, γ C, γ D, γ E, γ F, and γ G-crystallin, as well as the γ N and γ S-crystallin genes. The γ -crystallins are differentially regulated after early development, and are involved in cataract formation as a result of either age-related protein degradation or genetic mutation.

REFERENCES

- 1. Srivastava, O.P., et al. 1998. Purification of γ -crystallin from human lenses by acetone precipitation method. Curr. Eye Res. 17: 1074-1081.
- 2. Klok, E.J., et al. 1998. Regulation of expression within a gene family. The case of the rat γ B- and γ D-crystallin promoters. J. Biol. Chem. 273: 17206-17215.
- 3. Srivastava, O.P., et al. 1998. Degradation of γD- and γS-crystallins in human lenses. Biochem. Biophys. Res. Commun. 253: 288-294.
- 4. Stephan, D.A., et al. 1999. Progressive juvenile-onset punctate cataracts caused by mutation of the γ D-crystallin gene. Proc. Natl. Acad. Sci. USA 96: 1008-1012.
- Jaenicke, R., et al. 2001. Lens crystallins and their microbial homologs: structure, stability, and function. Crit. Rev. Biochem. Mol. Biol. 36: 435-499.
- 6. Pande, A., et al. 2001. Crystal cataracts: human genetic cataract caused by protein crystallization. Proc. Natl. Acad. Sci. USA 98: 6116-6120.
- 7. Wang, X., et al. 2004. Expression and regulation of α -, β -, and γ -crystallins in mammalian lens epithelial cells. Invest. Ophthalmol. Vis. Sci. 45: 3608-3619.
- 8. LocusLink Report (LocusID: 1420). http://www.ncbi.nlm.nih.gov/LocusLink

SOURCE

 γ -crystallin (P-18) is an affinity purified goat polyclonal antibody raised against a peptide mapping near the N-terminus of γ -crystallin of human origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-22415 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

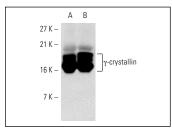
STORAGE

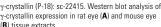
Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

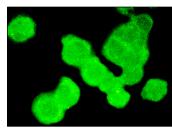
APPLICATIONS

 $\gamma\text{-crystallin}$ (P-18) is recommended for detection of γ A, γ B, γ C, γ D, γ E, and, to a lesser extent, γ S-crystallin of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 μ g per 100-500 μ g of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

 $\gamma\text{-crystallin}$ (P-18) is also recommended for detection of $\gamma\text{-crystallin}$ γA , γB , γC , γD , γE , γF and, to a lesser extent, γS in additional species, including canine, bovine and porcine.


Molecular Weight of γ-crystallin: 20 kDa.


Positive Controls: rat eye extract: sc-364805, mouse eye extract: sc-364241 or Y79 cell lysate: sc-2240.


RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey anti-goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunoprecipitation: use Protein A/G PLUS-Agarose: sc-2003 (0.5 ml agarose/2.0 ml). 3) Immunofluorescence: use donkey anti-goat IgG-FITC: sc-2024 (dilution range: 1:100-1:400) or donkey anti-goat IgG-TR: sc-2783 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941.

DATA

γ-crystallin (P-18): sc-22415. Immunofluorescence staining of methanol-fixed Y79 cells showing cytoplasmic localization

RESEARCH USE

For research use only, not for use in diagnostic procedures.

Try γ -crystallin (B-5): sc-365256 or γ -crystallin (F-4): sc-514201, our highly recommended monoclonal aternatives to γ -crystallin (P-18).

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com