Vinylbenzyl chloride

sc-224369

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Vinylbenzyl chloride

STATEMENT OF HAZARDOUS NATURE

NFPA

SUPPLIER
Santa Cruz Biotechnology, Inc.
2145 Delaware Avenue
Santa Cruz, California 95060
800.457.3801 or 831.457.3800

EMERGENCY:
ChemWatch
Within the US & Canada: 877-715-9305
Outside the US & Canada: +800 2436 2255
(1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS
C9-H9-Cl, CICH2C6H4CH=CH2, "styrene chloride", "chloromethyl styrene", "benzene, (chloromethyl)ethylen-", "toluene, alpha-chlorovinyl-", alpha-chlorovinyltoluene, "vinylbenzene chloride"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

CANADIAN WHMIS SYMBOLS

1 of 13
EMERGENCY OVERVIEW

RISK
Causes severe burns.
Risk of serious damage to eyes.
Possible risk of harm to the unborn child.
HARMFUL - May cause lung damage if swallowed.
Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
- The material can produce severe chemical burns within the oral cavity and gastrointestinal tract following ingestion.
- Ingestion of acidic corrosives may produce burns around and in the mouth.
- The throat and esophagus.
- Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733).
- The material has NOT been classified as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence.

EYE
- The material can produce severe chemical burns to the eye following direct contact. Vapors or mists may be extremely irritating.
- If applied to the eyes, this material causes severe eye damage.
- Direct eye contact with acid corrosives may produce pain, tears, sensitivity to light and burns.
- Mild burns of the epithelia generally recover rapidly and completely.
- Irritation of the eyes may produce a heavy secretion of tears (lachrymation).

SKIN
- The material can produce severe chemical burns following direct contact with the skin.
- Skin contact with acidic corrosives may result in pain and burns; these may be deep with distinct edges and may heal slowly with the formation of scar tissue.
- Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects.
- Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
- The material can cause respiratory irritation in some persons.
- The body's response to such irritation can cause further lung damage.
- Corrosive acids can cause irritation of the respiratory tract, with coughing, choking and mucous membrane damage.
- There may be dizziness, headache, nausea and weakness.
- Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.
- Inhalation hazard is increased at higher temperatures.
- Inhalation of quantities of liquid mist may be extremely hazardous, even lethal due to spasm, extreme irritation of larynx and bronchi, chemical pneumonitis and pulmonary edema.
- Hydrogen chloride (HCl) vapour or fumes present a hazard from a single acute exposure. Exposures of 1300 to 2000 ppm have been lethal to humans in a few minutes.
- Central nervous system (CNS) depression is seen at styrene exposures exceeding 50 ppm, whilst headache, fatigue, nausea and dizziness are reported consistently at exposures of 100 ppm.
- Eye and throat irritation occurred in human volunteers exposed to 376 ppm styrene for 1 hour and was accompanied by increased nasal secretion at exposures of 800 ppm for 4 hours.

CHRONIC HEALTH EFFECTS
- Repeated or prolonged exposure to acids may result in the erosion of teeth, swelling and ulceration of mouth lining. Irritation of airways to lung, with cough, and inflammation of lung tissue often occurs.
- Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.
- Results in experiments suggest that this material may cause disorders in the development of the embryo or fetus, even when no signs of poisoning show in the mother.
- Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.
- Chronic minor exposure to hydrogen chloride (HCl) vapour or fume may cause discolouration or erosion of the teeth, bleeding of the nose and gums; and ulceration of the nasal mucous membranes.
Repeated exposures of animals to concentrations of about 34 ppm HCl produced no immediate toxic effects. Workers exposed to hydrochloric acid suffered from gastritis and a number of cases of chronic bronchitis have also been reported. Repeated or prolonged exposure to dilute solutions of HCl may cause dermatitis.

Exposure to styrene may aggravate central nervous system disorders, chronic respiratory disease, skin disease, kidney disease and liver disease.

Workers engaged in the manufacture of styrene polymers with exposure to generally <1 ppm for 1-36 years had low erythrocyte counts and altered liver enzyme profiles. Blood and liver effects do not appear to be of concern for human exposures to styrene. Occupational studies in humans show styrene to be a neurotoxicant.

Occlusional styrene exposure causes central and peripheral nervous system effects. It causes a reversible decrease in colour discrimination and in some studies effects on hearing have been reported.

Neuro-optic pathways have been shown to be particularly sensitive to organic solvent exposure and studies support the proposition that styrene exposure can induce dose-dependent colour vision loss. In the fibre-glass reinforced plastics industry, visual colour impairment was detected were exposure was above 4 ppm. Campagna D. et al, Neurotoxicology, 17(2), pp 367-374, 1996

Studies of effects of styrene on the haematopoietic and immune systems, liver and kidney, in exposed workers, do not reveal consistent changes. Central nervous system effects of styrene in rats, guinea pigs and rabbits, have been reported. Styrene exposure causes liver and lung toxicity in mice and nasal toxicity in rats and mice.

Chromosomal abnormalities (micronuclei, chromosome gaps or breaks, nuclear bridges and unscheduled DNA synthesis in peripheral lymphocytes) have been recorded in workers exposed to styrene. Such aberrations however are not always apparent in epidemiological studies and the status of styrene as a DNA effector is equivocal.

Death due to cancers among workers exposed to styrene is statistically unremarkable. The dominant first metabolite of styrene is styrene-7,8-epoxide which binds covalently to DNA and shows activity in various in-vitro and in-vivo assays for genetic effects where it induces dose-related responses of chromosomal damage at low concentrations. Styrene-7,8-oxide is detected in the blood of workers exposed to styrene. Adducts in haemoglobin and DNA, DNA single-strand breaks/ alkali-labile sites as well as significant increases in the frequency of chromosomal damage have been found in workers exposed to styrene in the reinforced plastics industry.

In humans there is little evidence for an association between workplace exposure to styrene and spontaneous abortions, malformations or decreased male fecundity.

Spontaneous abortions amongst female worker, exposed to styrene, has been reported in some studies. This finding has not been substantiated in other studies. Increased congenital malformations, embryonic foetal deaths or reduced birth weights have also been reported but simultaneous exposure to other substances makes the link to styrene conjectural. In rats, there is some evidence for reduced sperm count and peripubertal animals may be more sensitive than adult animals. Styrene crosses the placenta in rats and mice. It increases prenatal death at doses levels causing decreased maternal weight gain. Decreased pup weight, postnatal developmental delays as well as neurobehavioral and neurochemical abnormalities have been reported in rats exposed to styrene during pre- or postnatal development. The potential for developmental toxicity appears to be much higher for styrene-7,8-oxide, a metabolite.

Rats given weekly doses of styrene by gavage at 500 mg/kg for 102 weeks showed liver, kidney, and stomach lesions; no effects were seen in mice. Reduced weight gain and increased liver and kidney weights occurred in rats receiving 285 or 475 mg/kg/day for 185 days but no effects at 95 mg/kg/day . Male and female rats were given 0, 1000, or 2000 mg/kg and male and female mice were given 0, 150, or 300 mg/kg by gavage for 78 weeks . Reduced body weight occurred in both treated male rat groups, high-dose female rats, and both treated female mouse groups. In another study, male and female mice were treated weekly with 1350 mg/kg . At 20 weeks, mortality was 50% and 20% for males and females, respectively accompanied by liver necrosis, splenic hypoplasia, and lung congestion. Male and female mice were exposed to 0, 62.5, 125, 250, or 500 ppm styrene for 6 hours/day, 5 days/week for 13 weeks . In both sexes the liver to body weight ratio was increased at the two highest doses; histopathology of the respiratory tract revealed metaplasia and degeneration of the olfactory epithelium of the nasal cavity at the lowest dose, oedema and bronchiolar regeneration at all concentrations. Male and female rats exposed to 0, 125, 500, 1000, or 1500 ppm on the same schedule had increased liver to body weight ratios at the three highest levels in males and the two highest levels in females; degeneration of the olfactory epithelium occurred in both sexes at around 1000 ppm. Pathological changes were observed in the respiratory mucosa of rats following exposure to 1000 ppm 4 hours/day, 5 days/week for 3 weeks

Chromosomal abnormalities (micronuclei, chromosome gaps or breaks, nuclear bridges and unscheduled DNA synthesis in peripheral lymphocytes) have been recorded in workers exposed to styrene. Such aberrations however are not always apparent in epidemiological studies and the status of styrene as a DNA effector is equivocal.

Death due to cancers among workers exposed to styrene is statistically unremarkable. The dominant first metabolite of styrene is styrene-7,8-epoxide which binds covalently to DNA and shows activity in various in-vitro and in-vivo assays for genetic effects where it induces dose-related responses of chromosomal damage at low concentrations. Styrene-7,8-oxide is detected in the blood of workers exposed to styrene. Adducts in haemoglobin and DNA, DNA single-strand breaks/ alkali-labile sites as well as significant increases in the frequency of chromosomal damage have been found in workers exposed to styrene in the reinforced plastics industry.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>vinylbenzyl chloride</td>
<td>30030-25-2</td>
<td>>98</td>
</tr>
<tr>
<td>mixture of isomers as 3-vinylbenzyl chloride</td>
<td>57458-41-0</td>
<td></td>
</tr>
<tr>
<td>4-vinylbenzyl chloride</td>
<td>1592-20-7</td>
<td></td>
</tr>
<tr>
<td>slowly hydrolyses in water to produce</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
hydrogen chloride 7647-01-0
commercial product contains stabilised with
4-tert-butylcatechol 98-29-3 50 ppm
nitromethane 75-52-5 500 ppm

Section 4 - FIRST AID MEASURES

SWALLOWED
- For advice, contact a Poisons Information Center or a doctor at once. · Urgent hospital treatment is likely to be needed. · If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

EYE
- If this product comes in contact with the eyes: · Immediately hold eyelids apart and flush the eye continuously with running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN
- If skin or hair contact occurs: · Immediately flush body and clothes with large amounts of water, using safety shower if available. · Quickly remove all contaminated clothing, including footwear.

INHALED
- If fumes or combustion products are inhaled remove from contaminated area. · Lay patient down. Keep warm and rested. Inhalation of vapors or aerosols (mists, fumes) may cause lung edema. Corrosive substances may cause lung damage (e.g.

NOTES TO PHYSICIAN
- Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically.

For acute or short term repeated exposures to strong acids:
- Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially.
- Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling.

For acute or short term repeated exposures to styrene:
- Severe exposures should have cardiac monitoring to detect arrhythmia. · Catecholamines, especially epinephrine (adrenalin) should be used cautiously (if at all). Vinylbenzyl chloride is a congener of styrene.

Section 5 - FIRE FIGHTING MEASURES

Vapor Pressure (mmHg): 0.975 @ 56.1 C
Upper Explosive Limit (%): Not available
Specific Gravity (water=1): 1.074
Lower Explosive Limit (%): Not available

EXTINGUISHING MEDIA
- Foam.
- Dry chemical powder.

FIRE FIGHTING
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
When any large container (including road and rail tankers) is involved in a fire, consider evacuation by 800 metres in all directions.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
- Combustible.
- Slight fire hazard when exposed to heat or flame. Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen chloride, phosgene, other pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY
- Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION
Glasses:
Safety Glasses.
Full face- shield.
Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
- Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material.
- Check regularly for spills and leaks.
- Clean up all spills immediately.
- Avoid breathing vapors and contact with skin and eyes.

MAJOR SPILLS
- DO NOT touch the spill material.
- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING
- DO NOT USE brass or copper containers / stirrers.
- DO NOT allow clothing wet with material to stay in contact with skin.
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.

RECOMMENDED STORAGE METHODS
- DO NOT use aluminum or galvanized containers.
- Check regularly for spills and leaks.

Glass container.
- Lined metal can, Lined metal pail/drum
- Plastic pail.

For low viscosity materials
- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

STORAGE REQUIREMENTS
- Store in original containers.
- Store at -20˚C.
- Keep containers securely sealed.

Section 8 - EXPOSITION CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Peak ppm</th>
<th>Peak mg/m³</th>
<th>TWA F/CC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada - Alberta</td>
<td>vinylbenzyl chloride (Hydrogen chloride)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Occupational Exposure Limits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - British</td>
<td>vinylbenzyl chloride (Hydrogen chloride)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Columbia Occupational Exposure Limits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revised 2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Minnesota Permissible Exposure</td>
<td>vinylbenzyl chloride (Hydrogen chlorine)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Limits (PELs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US ACGIH Threshold Limit Values (TLV)</td>
<td>vinylbenzyl chloride (Hydrogen chloride)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>TLV Basis: upper respiratory tract</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>vinylbenzyl chloride (Hydrogen chloride)</td>
<td>5 7</td>
<td>5 7</td>
<td>(C)5 (C)7</td>
<td>5 7</td>
<td>5 7</td>
<td>5 7</td>
<td>5 7</td>
<td>5 7</td>
</tr>
</tbody>
</table>
US - Oregon
Permissible Exposure Limits (Z-1)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Limit 1</th>
<th>Limit 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinylbenzyl chloride (Hydrogen chloride)</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

US - Wyoming
Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants

<table>
<thead>
<tr>
<th>Compound</th>
<th>Limit 1</th>
<th>Limit 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinylbenzyl chloride (Hydrogen chloride)</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

Canada - Quebec
Permissible Exposure Values for Airborne Contaminants (English)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Limit 1</th>
<th>Limit 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinylbenzyl chloride (Hydrogen chloride)</td>
<td>5</td>
<td>7.5</td>
</tr>
</tbody>
</table>

US OSHA
Permissible Exposure Levels (PELs) - Table Z1

<table>
<thead>
<tr>
<th>Compound</th>
<th>Limit 1</th>
<th>Limit 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinylbenzyl chloride (Hydrogen chloride)</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

Canada - Northwest Territories
Occupational Exposure Limits (English)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Limit 1</th>
<th>Limit 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinylbenzyl chloride (Hydrogen chloride)</td>
<td>5</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Canada - Nova Scotia
Occupational Exposure Limits

<table>
<thead>
<tr>
<th>Compound</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinylbenzyl chloride (Hydrogen chloride)</td>
<td>2</td>
</tr>
</tbody>
</table>

Canada - Prince Edward Island
Occupational Exposure Limits

<table>
<thead>
<tr>
<th>Compound</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinylbenzyl chloride (Hydrogen chloride)</td>
<td>2</td>
</tr>
</tbody>
</table>

TLV Basis: upper respiratory tract irritation

PERSONAL PROTECTION

RESPIRATOR
- Type AB-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

EYE
- Chemical goggles.
- Full face shield.

HANDS/FEET
- Elbow length PVC gloves.
- When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.
- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
 - Frequency and duration of contact,
 - Chemical resistance of glove material,
 - Glove thickness and
 - Dexterity
- Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
Contaminated gloves should be replaced. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER
- Overalls.
- PVC Apron.

ENGINEERING CONTROLS
- Local exhaust ventilation usually required. If risk of overexposure exists, wear an approved respirator.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

<table>
<thead>
<tr>
<th>State</th>
<th>LIQUID</th>
<th>Molecular Weight</th>
<th>152.62</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Range (°F)</td>
<td>Not available</td>
<td>Viscosity</td>
<td>Not Available</td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>444</td>
<td>Solubility in water (g/L)</td>
<td>Reacts</td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>221</td>
<td>pH (1% solution)</td>
<td>Not available</td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>Not Available</td>
<td>pH (as supplied)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>1139</td>
<td>Vapor Pressure (mmHg)</td>
<td>0.975 @ 56.1°C</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available</td>
<td>Specific Gravity (water=1)</td>
<td>1.074</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
<td>Relative Vapor Density (air=1)</td>
<td>5.3</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Not available</td>
<td>Evaporation Rate</td>
<td>Not available</td>
</tr>
</tbody>
</table>

APPEARANCE

Colourless liquid; mixes with water (1.2%). Inhibitor system requires oxygen to function. Do NOT STORE under nitrogen as polymerisation will occur.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY
- Polymerisation may occur at elevated temperatures.
- Polymerisation may be accompanied by generation of heat as exotherm.
- Contact with alkaline material liberates heat.

STORAGE INCOMPATIBILITY
- Hydrogen chloride:
 - Reacts strongly with strong oxidisers (releasing chlorine gas), acetic anhydride, caesium cyanotridecahydrodecaborate(2-), ethyldiene difluoride, hexaliumtium disilicide, metal acetylide, sodium, silicon dioxide, tetrastilium tetraniotride, and many organic materials
 - is incompatible with alkaline materials, acetic anhydride, acetylides, aliphatic amines, alkanolamines, alkylene oxides, aluminium, aluminium-titanium alloys, aromatic amines, amines, amides, 2-aminoethanol, ammonia, ammonium hydroxide, borides, calcium phosphate, carbides, carbonates, cyanides, chlorosulfonic acid, ethylenediamine, ethyleneimine, epichlorohydrin, formaldehyde, isocyanates, metals, metal oxides, metal hydroxides, metal acetylides, metal carbides, oleum, organic anhydrides, potassium permanganate, perchloric acid, phosphides, 3-propiolactone, silicides, sulfides, sulfites, sulfuric acid, uranium phosphate, vinyl acetate, vinylidene fluoride
 - attacks most metals forming flammable hydrogen gas, and some plastics, rubbers and coatings
 - reacts with zinc, brass, galvanised iron, aluminium, copper and copper alloys.
React with wild steel, galvanised steel / zinc producing hydrogen gas which may form an explosive mixture with air.

Contamination with polymerization catalysts - peroxides, persulfates, oxidizing agents - also strong acids, strong alkalies, will cause polymerization with exotherm - generation of heat.

Polymerization of large quantities may be violent - even explosive.
- Avoid any contamination of this material as it is very reactive and any contamination is potentially hazardous.
- Segregate from alcohol, water.
- Segregate from alkalis, oxidizing agents and chemicals readily decomposed by acids, i.e. cyanides, sulfides, carbonates.
- Avoid strong bases.
- NOTE: May develop pressure in containers; open carefully. Vent periodically.

For incompatible materials - refer to Section 7 - Handling and Storage.
TOXICITY AND IRRITATION

- unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.
- The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.
- Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

4-VINYLBENZYL CHLORIDE:
3-VINYLBENZYL CHLORIDE:

- Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's edema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type.

3-VINYLBENZYL CHLORIDE:
4-VINYLBENZYL CHLORIDE:
VINYLBENZYL CHLORIDE:

- The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.
- The material may produce respiratory tract irritation, and result in damage to the lung including reduced lung function.

HYDROGEN CHLORIDE:

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalation (human) LCl0: 1300 ppm/30m</td>
<td>Eye (rabbit): 5 mg/30s - Mild</td>
</tr>
<tr>
<td>Inhalation (human) LCl0: 3000 ppm/5m</td>
<td></td>
</tr>
<tr>
<td>Inhalation (rat) LC50: 3124 ppm/60m</td>
<td></td>
</tr>
<tr>
<td>4701 ppm/30m</td>
<td></td>
</tr>
</tbody>
</table>

CARCINOGEN

- Hydrochloric acid: International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs Group 3
- Acid mists, strong inorganic: International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs Group 1
- Zinc and Compounds: US EPA Carcinogens Listing Carcinogenicity D
- Zinc and Compounds: US ACGIH Threshold Limit Values (TLV) - Carcinogens Carcinogen Category D
- Hydrogen chloride: US ACGIH Threshold Limit Values (TLV) - Carcinogens Carcinogen Category A4
- hydrogen chloride: US - Rhode Island Hazardous Substance List IARC

ORGANIC BROMINE COMPOUNDS

- Hydrogen chloride: US Environmental Defense Scorecard Suspected Carcinogens Reference(s) P65-MC
- TWAPPMM: US - Maine Chemicals of High Concern List Carcinogen A4
- PBIT_(PERS~: US - Maine Chemicals of High Concern List Carcinogen

Section 12 - ECOLOGICAL INFORMATION

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. This material and its container must be disposed of as hazardous waste. Avoid release to the environment.
Refer to special instructions/ safety data sheets.

Ecotoxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
<th>Bioaccumulation</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>vinylbenzyl chloride</td>
<td>HIGH</td>
<td>No Data Available</td>
<td>LOW</td>
<td>MED</td>
</tr>
<tr>
<td>3-vinylbenzyl chloride</td>
<td>HIGH</td>
<td>No Data Available</td>
<td>LOW</td>
<td>MED</td>
</tr>
<tr>
<td>4-vinylbenzyl chloride</td>
<td>HIGH</td>
<td>No Data Available</td>
<td>LOW</td>
<td>MED</td>
</tr>
<tr>
<td>hydrogen chloride</td>
<td>LOW</td>
<td>No Data Available</td>
<td>LOW</td>
<td>HIGH</td>
</tr>
</tbody>
</table>

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions
A. General Product Information

Corrosivity characteristic: use EPA hazardous waste number D002 (waste code C)

Disposal Instructions

- All waste must be handled in accordance with local, state and federal regulations.
- Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.
- A Hierarchy of Controls seems to be common - the user should investigate:
 - Reduction
 - Reuse
 - Recycling
 - Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

Section 14 - TRANSPORTATION INFORMATION

DOT:
- Symbols: None
- Hazard class or Division: 8
- Identification Numbers: UN3265 PG: II
- Label Codes: 8 Special provisions: B2, IB2, T11, TP2, TP27
- Packaging: Exceptions: 154 Packaging: Non- bulk: 202
- Packaging: Exceptions: 154 Quantity limitations: 1 L
- Passenger aircraft/rail:
 - Quantity Limitations: Cargo 30 L Vessel stowage: Location: B
- aircraft only:
 - Vessel stowage: Other: 40
- Hazardous materials descriptions and proper shipping names:
 - Corrosive liquid, acidic, organic, n.o.s.

Air Transport IATA:
- UN/ID Number: 3265 Packing Group: II
- Special provisions: A3
- Cargo Only
- Packing Instructions: 855 Maximum Qty/Pack: 30 L
- Passenger and Cargo

10 of 13
Section 15 - REGULATORY INFORMATION

vinylbenzyl chloride (CAS: 30303-25-2) is found on the following regulatory lists;

- Canada Non-Domestic Substances List (NDSL)
- US - Pennsylvania - Hazardous Substance List
- US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

Regulations for ingredients

3-vinylbenzyl chloride (CAS: 57458-41-0) is found on the following regulatory lists;

- Canada - Alberta Ambient Air Quality Objectives
- Canada - Alberta Occupational Exposure Limits
- Canada - British Columbia Occupational Exposure Limits
- Canada - Northwest Territories Occupational Exposure Limits (English)
- Canada - Nova Scotia Occupational Exposure Limits
- Canada - Prince Edward Island Occupational Exposure Limits
- Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)
- Canada - Saskatchewan Industrial Hazardous Substances
- Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits
- Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances
- Canada Domestic Substances List (DSL)
- Canada Ingredient Disclosure List (SOR/88-64)
- Canada National Pollutant Release Inventory (NPRI)
- Canada Prohibited Toxic Substances, Schedule 2, Concentration Limits (English)
- Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)
- CODEX General Standard for Food Additives (GSFA) - Additives Permitted for Use in Food in General, Unless Otherwise Specified, in Accordance with GMP
- GESAMP/PHS Composite List - GESAMP Hazard Profiles
- IMO IBC Code Chapter 17 - Summary of minimum requirements
- IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk
- International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs
- International Council of Chemical Associations (ICCA) - High Production Volume List
- International Maritime Dangerous Goods Requirements (IMDG Code) - Goods Forbidden for Transport
- United Nations Convention Against Illicit Traffic in Narcotic Drugs and Psychotropic Substances - Table II
- United Nations List of Precursors and Chemicals Frequently used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances Under International Control (Red List) - Table III
- US - Alaska Limits for Air Contaminants
- US - California Air Toxics "Hot Spots" List (Assembly Bill 2580) Substances for which emissions must be quantified
- US - California Occupational Safety and Health Regulations (CAL/OSHA) - Hazardous Substances List
- US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELS)
- US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs (CRELs)
- US - California Permissible Exposure Limits for Chemical Contaminants
- US - California Toxic Air Contaminant List Category II
- US - Connecticut Hazardous Air Pollutants
- US - Florida Essential Chemicals
- US - Hawaii Air Contaminant Limits
- US - Idaho - Limits for Air Contaminants
- US - Massachusetts Oil & Hazardous Material List
- US - Michigan Exposure Limits for Air Contaminants
- US - Minnesota Hazardous Substance List
- US - Minnesota Permissible Exposure Limits (PELs)
- US - New Jersey Right to Know Hazardous Substances
- US - Oregon Hazardous Materials
- US - Oregon Permissible Exposure Levels (Z-1)
- US - Pennsylvania - Hazardous Substance List
- US - Rhode Island Hazardous Substance List
- US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants
- US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants
- US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants
- US - Washington Permissible exposure limits of air contaminants
- US - Wyoming Air Toxics and Hazardous Substances Table Z1 Limits for Air Contaminants
- US ACGIH Threshold Limit Values (TLV)
- US ACGIH Threshold Limit Values (TLV) - Carcinogens
- US Clean Air Act - Hazardous Air Pollutants
- US CWA (Clean Water Act) - List of Hazardous Substances
- US CWA (Clean Water Act) - Reportable Quantities of Designated Hazardous Substances
- US Department of Homeland Security - Chemical Facility Anti-Terrorism Standards
- US Department of Transportation (DOT) List of Hazardous Substances and Reportable Quantities - Hazardous Substances Other Than Radionuclides
- US DOE Temporary Emergency Exposure Limits (TEELs)
- US Drug Enforcement Administration (DEA) List I and II Regulated Chemicals
- US EPA Acute Exposure Guideline Levels (AEGls) - Final
- US EPA High Production Volume Chemicals Additional List
- US EPA Master Testing List - Index I Chemicals Listed
- US EPCRA Section 313 Chemical List
- US Food Additive Database
- US List of Lists - Consolidated List of Chemicals Subject to EPCRA, CERCLA and Section 112(r) of the Clean Air Act
- US NIOSH Recommended Exposure Limits (RELs)
- US OSHA List of Highly Hazardous Chemicals, Toxics and Reactives
- US OSHA Permissible Exposure Levels (PELs)
- US Postal Service (USPS) Hazardous Materials Table - Postal Service Mailability Guide
- US SARA Section 302 Extremely Hazardous Substances
- US Spacecraft Maximum Allowable Concentrations (SMACs) for Airborne Contaminants
- US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

4-vinylbenzyl chloride (CAS: 1592-20-7) is found on the following regulatory lists;

- Canada Domestic Substances List (DSL)
- US DOE Temporary Emergency Exposure Limits (TEELs)
- US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

hydrogen chloride (CAS: 7647-01-0) is found on the following regulatory lists;

- Canada - Alberta Ambient Air Quality Objectives
- Canada - Alberta Occupational Exposure Limits
- Canada - British Columbia Occupational Exposure Limits
- Canada - Northwest Territories Occupational Exposure Limits (English)
- Canada - Nova Scotia Occupational Exposure Limits
- Canada - Prince Edward Island Occupational Exposure Limits

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Inhalation may produce health damage.
- Cumulative effects may result following exposure.

Denmark Advisory list for selfclassification of dangerous substances

Substance CAS Suggested codes vinylbenzyl chloride 30030-25-2 Rep3; R63 Xi; R38 N; R50/53 3-vinylbenzyl chloride 57458-41-0 Rep3; R63 Xi; R38 N; R50/53 4-vinylbenzyl chloride 1592-20-7 Rep3; R63 Xi; R38 N; R50/53 4-vinylbenzyl chloride 57458-41-0 Rep3; R63 Xi; R38 N; R50/53

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.
- A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or