β-crystallin (FL-252): sc-22745

The Power to Question

BACKGROUND

Crystallins are the major proteins of the vertebrate eye lens, where they maintain the transparency and refractive index of the lens. Crystallins are divided into $\alpha,\,\beta$ and γ families, and the β and γ -crystallins also comprise a superfamily. Crystallins usually contain seven distinctive protein regions, including four homologous motifs, a connecting peptide and N- and C-terminal extensions. β -crystallins constitute the major lens structural proteins, and they associate into dimers, tetramers and higher order aggregates. The β -crystallin subfamily is composed of several gene products, including β A1, β A2, β A3, β A4, β B1, β B2 and β B3-crystallin. The β A1 and β A3-crystallin proteins are encoded by a single mRNA. They differ by only 17 amino acids, and β A1-crystallin is generated by use of an alternate translation initiation site. The genes for β A4, β B1, β B2 and β B3-crystallin are clustered on human chromosome 22q11, while the genes for β A3/A1 and β A2-crystallin map to human chromosomes 17q11 and 2q34, respectively.

REFERENCES

- Hope, J.N., et al. 1994. β A3/A1-crystallin association: role of the N-terminal arm. Protein Eng. 7: 445-451.
- 2. Hejtmancik, J.F., et al. 1997. Association properties of β B2- and β A3-crystallin: ability to form dimers. Protein Eng. 10: 1347-1352.
- 3. Slingsby, C., et al. 1999. Structure of the crystallins. Eye 13: 395-402.
- 4. Werten, P.J., et al. 1999. The short 5' untranslated region of the β A3/A1-crystallin mRNA is responsible for leaky ribosomal scanning. Mol. Biol. Rep. 26: 201-205.

SOURCE

 β -crystallin (FL-252) is a rabbit polyclonal antibody raised against amino acids 1-252 representing full length β B1-crystallin of human origin.

PRODUCT

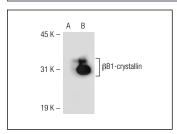
Each vial contains 200 μg lgG in 1.0 ml of PBS with <0.1% sodium azide and 0.1% gelatin.

APPLICATIONS

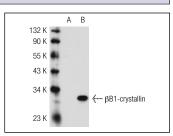
 $\beta\text{-crystallin}$ (FL-252) is recommended for detection of $\beta B1\text{-crystallin}$ and, to a lesser extent, $\beta A1/3$, A2, A4, B2 and B3-crystallin of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 μg per 100-500 μg of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Molecular Weight of β-crystallin: 29 kDa.

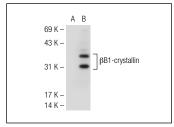
Positive Controls: mouse eye extract: sc-364241, βB1-crystallin (h2): 293T Lysate: sc-128077 or βB1-crystallin (m): 293T Lysate: sc-118649.

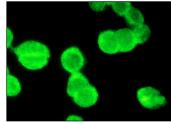

RESEARCH USE

For research use only, not for use in diagnostic procedures.


STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.


DATA


β-crystallin (FL-252): sc-22745. Western blot analysis of βB1-crystallin expression in non-transfected: sc-117752 (A) and mouse βB1-crystallin transfected: sc-118649 (B) 293T whole cell Ivsates.

 β -crystallin (FL-252): sc-22745. Western blot analysis of β B1-crystallin expression in non-transfected: sc-117752 (\mathbf{A}) and human β B1-crystallin transfected: sc-115374 (\mathbf{B}) 293T whole cell lysates.

β-crystallin (FL-252): sc-22745. Western blot analysis of βB1-crystallin expression in non-transfected: sc-117752 (**A**) and human βB1-crystallin transfected: sc-128077 (**B**) 293T whole cell Ivsates.

β-crystallin (FL-252): sc-22745. Immunofluorescence staining of methanol-fixed Y79 cells showing cytoplasmic localization.

SELECT PRODUCT CITATIONS

- 1. Burgess, D., et al. 2010. Activated Ras alters lens and corneal development through induction of distinct downstream targets. BMC Dev. Biol. 10: 13.
- 2. Yang, C., et al. 2010. Efficient generation of lens progenitor cells and lentoid bodies from human embryonic stem cells in chemically defined conditions. FASEB J. 24: 3274-3283.
- 3. Ren, S., et al. 2010. Physiological expression of lens α -, β -, and γ -crystallins in murine and human corneas. Mol. Vis. 16: 2745-2752.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

Try β B1-crystallin (H-3): sc-48335 or β B2-crystallin (B-12): sc-376006, our highly recommended monoclonal aternatives to β -crystallin (FL-252).

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com