Formic acid-13C

sc-228229

Material Safety Data Sheet

<table>
<thead>
<tr>
<th>Hazard Alert Code Key:</th>
<th>EXTREME</th>
<th>HIGH</th>
<th>MODERATE</th>
<th>LOW</th>
</tr>
</thead>
</table>

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Formic acid-13C

STATEMENT OF HAZARDOUS NATURE

NFPA

SUPPLIER
Santa Cruz Biotechnology, Inc.
2145 Delaware Avenue
Santa Cruz, California 95060
800.457.3801 or 831.457.3800

EMERGENCY
ChemWatch
Within the US & Canada: 877-715-9305
Outside the US & Canada: +800 2436 2255
(1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS
(13C)H2O2, "formic-13C acid"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

CANADIAN WHMIS SYMBOLS

FLAMMABILITY 2
HEALTH HAZARD 3
INSTABILITY 2
EMERGENCY OVERVIEW

RISK
Causes severe burns.
Risk of serious damage to eyes.
Flammable.
Ingestion may produce health damage*. Cumulative effects may result following exposure*. *
(limited evidence).

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
■ Ingestion of acidic corrosives may produce burns around and in the mouth, the throat and oesophagus. Immediate pain and difficulties in swallowing and speaking may also be evident. Swelling of the epiglottis may make it difficult to breathe which may result in suffocation. More severe exposure may result in vomiting blood and thick mucus, shock, abnormally low blood pressure, fluctuating pulse, shallow respiration and clammy skin, inflammation of stomach wall, and rupture of oesophageal tissue. Untreated shock may eventually result in kidney failure. Severe cases may result in perforation of the stomach and abdominal cavity with consequent infection, rigidity and fever. There may be severe narrowing of the oesophageal or pyloric sphincters; this may occur immediately or after a delay of weeks to years. There may be coma and convulsions, followed by death due to infection of the abdominal cavity, kidneys or lungs.
■ Accidental ingestion of the material may be damaging to the health of the individual.
■ Formic acid has a half life of 2.5 hours and may cause salivation, oral burning sensation, nausea, vomiting, diarrhoea, tissue damage, bleeding, shock and even death in severe cases.
■ Ingestion of low-molecular organic acid solutions may produce spontaneous haemorrhaging, production of blood clots, gastrointestinal damage and narrowing of the oesophagus and stomach entry.

EYE
■ The material can produce severe chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating.
■ If applied to the eyes, this material causes severe eye damage.
■ Direct eye contact with acid corrosives may produce pain, tears, sensitivity to light and burns. Mild burns of the epithelia generally recover rapidly and completely. Severe burns produce long-lasting and possibly irreversible damage. The appearance of the burn may not be apparent for several weeks after the initial contact. The cornea may ultimately become deeply opaque resulting in blindness.
■ Solutions of low-molecular weight organic acids cause pain and injury to the eyes.
■ Eye contact with formic acid liquid or its high vapour concentrations will produce irritation, inflamed conjunctiva with reddened eye and possibly corneal burns.

SKIN
■ The material can produce severe chemical burns following direct contact with the skin.
■ Skin contact with acidic corrosives may result in pain and burns; these may be deep with distinct edges and may heal slowly with the formation of scar tissue.
■ Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions.
■ Open cuts, abraded or irritated skin should not be exposed to this material.
■ Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
■ Skin contact with formic acid may cause irritation, burns, keloids and blisters. Inability to speak, breathing and swallowing difficulty may occur depending on route and site of exposure.

INHALED
■ The material can cause respiratory irritation in some persons. The body’s response to such irritation can cause further lung damage.
■ Corrosive acids can cause irritation of the respiratory tract, with coughing, choking and mucous membrane damage. There may be dizziness, headache, nausea and weakness. Swelling of the lungs can occur, either immediately or after a delay; symptoms of this include chest tightness, shortness of breath, frothy phlegm and cyanosis. Lack of oxygen can cause death hours after onset.
■ Excessive inhalation of formic acid vapour can produce respiratory symptoms, headache, nausea and weakness, but the warning properties of formic acid helps to deter exposure and hence prevent systemic effects.

CHRONIC HEALTH EFFECTS
■ Repeated or prolonged exposure to acids may result in the erosion of teeth, swelling and/or ulceration of mouth lining. Irritation of airways to lung, with cough, and inflammation of lung tissue often occurs. Chronic exposure may inflame the skin or conjunctiva.
■ Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.
■ Chronic occupational exposures to formic acid may cause nausea and albumin or blood in the urine.
Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>formic acid C-13</td>
<td>1633-56-3</td>
<td>>80</td>
</tr>
<tr>
<td>may contain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>formic acid</td>
<td>64-18-6</td>
<td></td>
</tr>
<tr>
<td>water</td>
<td>7732-18-5</td>
<td><20</td>
</tr>
</tbody>
</table>

Section 4 - FIRST AID MEASURES

SWALLOWED
- For advice, contact a Poisons Information Centre or a doctor at once.
- Urgent hospital treatment is likely to be needed.
- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Transport to hospital or doctor without delay.

EYE
If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN
If skin or hair contact occurs:
- Immediately flush body and clothes with large amounts of water, using safety shower if available.
- Quickly remove all contaminated clothing, including footwear.
- Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre.
- Transport to hospital, or doctor.

INHALED
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.
- Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema.
- Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs).
- As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested.
- Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered.
This must definitely be left to a doctor or person authorised by him/her. (ICSC13719).

NOTES TO PHYSICIAN
- For acute or short term repeated exposures to strong acids:
- Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially.
- Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling
- Intravenous lines should be established immediately in all cases where there is evidence of circulatory compromise.
- Strong acids produce a coagulation necrosis characterised by formation of a coagulum (eschar) as a result of the desiccating action of the acid on proteins in specific tissues.

INGESTION:
- Immediate dilution (milk or water) within 30 minutes post ingestion is recommended.
- DO NOT attempt to neutralise the acid since exothermic reaction may extend the corrosive injury.
- Be careful to avoid further vomit since re-exposure of the mucosa to the acid is harmful. Limit fluids to one or two glasses in an adult.
- Charcoal has no place in acid management.
Some authors suggest the use of lavage within 1 hour of ingestion.

SKIN:
- Skin lesions require copious saline irrigation. Treat chemical burns as thermal burns with non-adherent gauze and wrapping.
- Deep second-degree burns may benefit from topical silver sulfadiazine.

EYE:
- Eye injuries require retraction of the eyelids to ensure thorough irrigation of the conjunctival cul-de-sacs. Irrigation should last at least 20-30 minutes. DO NOT use neutralising agents or any other additives. Several litres of saline are required.
- Cycloplegic drops, (1% cyclopentolate for short-term use or 5% homatropine for longer term use) antibiotic drops, vasoconstrictive agents or artificial tears may be indicated dependent on the severity of the injury.
- Steroid eye drops should only be administered with the approval of a consulting ophthalmologist.

[Ellenhorn and Barceloux: Medical Toxicology]
If exposure has been severe and/or symptoms marked, observation in hospital for 48 hours should be considered due to possibility of delayed pulmonary oedema.

Section 5 - FIRE FIGHTING MEASURES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapor Pressure (mmHg)</td>
<td>23.027 @ 20 deg.C</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>57</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>1.21 @ 20 deg.C</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>18</td>
</tr>
</tbody>
</table>

EXTINGUISHING MEDIA
- Alcohol stable foam.
- Water spray or fog.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.

FIRE FIGHTING
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.
- Do not approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

When any large container (including road and rail tankers) is involved in a fire, consider evacuation by 800 metres in all directions.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), other pyrolysis products typical of burning organic material.
- Flammable.
- Moderate fire and explosion hazard when exposed to heat or flame.
- Acids may react with metals to produce hydrogen, a highly flammable and explosive gas.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- May emit corrosive fumes.
- Combustible.
- Slight fire hazard when exposed to heat or flame.
- Acids may react with metals to produce hydrogen, a highly flammable and explosive gas.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- May emit acrid smoke and corrosive fumes.

FIRE INCOMPATIBILITY
- Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact by using protective equipment.
- Contain and absorb small quantities with vermiculite or other absorbent material.
- Wipe up.
- Collect residues in a flammable waste container.
- Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material.
Check regularly for spills and leaks.

MAJOR SPILLS

Chemical Class: acidic compounds, organic

For release onto land: recommended sorbents listed in order of priority.

<table>
<thead>
<tr>
<th>SORBENT TYPE</th>
<th>RANK</th>
<th>APPLICATION</th>
<th>COLLECTION</th>
<th>LIMITATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND SPILL - SMALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wood fiber - pillow</td>
<td>1</td>
<td>throw</td>
<td>pitchfork</td>
<td>R, P, DGC, RT</td>
</tr>
<tr>
<td>cross-linked polymer - particulate</td>
<td>1</td>
<td>shovel</td>
<td>shovel</td>
<td>R,W,SS</td>
</tr>
<tr>
<td>cross-linked polymer - pillow</td>
<td>1</td>
<td>throw</td>
<td>pitchfork</td>
<td>R, DGC, RT</td>
</tr>
<tr>
<td>sorbent clay - particulate</td>
<td>2</td>
<td>shovel</td>
<td>shovel</td>
<td>R, I, P</td>
</tr>
<tr>
<td>foamed glass - pillow</td>
<td>2</td>
<td>throw</td>
<td>pitchfork</td>
<td>R, P, DGC, RT</td>
</tr>
<tr>
<td>wood fiber - particulate</td>
<td>3</td>
<td>shovel</td>
<td>shovel</td>
<td>R, W, P, DGC</td>
</tr>
<tr>
<td>LAND SPILL - MEDIUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cross-linked polymer - particulate</td>
<td>1</td>
<td>blower</td>
<td>skiploader</td>
<td>R, W, SS</td>
</tr>
<tr>
<td>polypropylene - particulate</td>
<td>2</td>
<td>blower</td>
<td>skiploader</td>
<td>W, SS, DGC</td>
</tr>
<tr>
<td>sorbent clay - particulate</td>
<td>2</td>
<td>blower</td>
<td>skiploader</td>
<td>R, I, P</td>
</tr>
<tr>
<td>cross-linked polymer - pillow</td>
<td>3</td>
<td>throw</td>
<td>skiploader</td>
<td>R, DGC, RT</td>
</tr>
<tr>
<td>polypropylene - mat</td>
<td>3</td>
<td>throw</td>
<td>skiploader</td>
<td>W, SS, DGC</td>
</tr>
<tr>
<td>expanded mineral - particulate</td>
<td>3</td>
<td>blower</td>
<td>skiploader</td>
<td>R, I, W, P, DGC</td>
</tr>
</tbody>
</table>

Legend

- DGC: Not effective where ground cover is dense
- R: Not reusable
- I: Not incinerable
- P: Effectiveness reduced when rainy
- RT: Not effective where terrain is rugged
- SS: Not for use within environmentally sensitive sites
- W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control; R.W Melvold et al; Pollution Technology Review No. 150: Noyes Data Corporation 1988.

- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Neutralise/decontaminate residue (see Section 13 for specific agent).
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- DO NOT allow clothing wet with material to stay in contact with skin
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- WARNING: To avoid violent reaction, ALWAYS add material to water and NEVER water to material.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
Always wash hands with soap and water after handling.
Work clothes should be laundered separately. Launder contaminated clothing before re-use.
Use good occupational work practice.
Observe manufacturer’s storing and handling recommendations.
Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

RECOMMENDED STORAGE METHODS
DO NOT repack. Use only containers as originally supplied by manufacturer.
Glass container is suitable for laboratory quantities
DO NOT use aluminium or galvanised containers
Check regularly for spills and leaks
DO NOT use aluminium, galvanised or tin-plated containers
Lined metal can, lined metal pail/ can.
Plastic pail.
Polyliner drum.
Packing as recommended by manufacturer.
Check all containers are clearly labelled and free from leaks.
For low viscosity materials
Drums and jerricans must be of the non-removable head type.
Where a can is to be used as an inner package, the can must have a screwed enclosure.
For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):
Removable head packaging;
Cans with friction closures and
low pressure tubes and cartridges
may be used.
Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

STORAGE REQUIREMENTS
Store in approved flammable liquid storage area.
No smoking, naked lights/ignition sources.
Keep containers securely sealed.
Store away from incompatible materials in a cool, dry, well-ventilated area.
Protect containers against physical damage and check regularly for leaks.
Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel - adequate security must be provided so that unauthorised personnel do not have access.
Store in grounded, properly designed and approved vessels and away from incompatible materials
Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances.
Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems.
Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers - dry chemical, foam or carbon dioxide) and flammable gas detectors.
Keep adsorbents for leaks and spills readily available
For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up; storage tanks should be above ground and diked to hold entire contents
Observe manufacturer’s storing and handling recommendations.
WARNING: Decomposition may occur after prolonged storage.
Rotate all stock to prevent ageing. Use on FIFO (First In-First Out) basis.
Pure formic acid slowly decomposes releasing toxic carbon monoxide and may pressurise containers.
Water in less concentrated acid improves stability.
Extreme care needed in opening containers of unknown age.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Peak ppm</th>
<th>Peak mg/m³</th>
<th>TWA F/CC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>US ACGIH</td>
<td>formic acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TLV® Basis: URT, eye, &</td>
</tr>
<tr>
<td>Threshold Limit</td>
<td>C-13 (Formic</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>skin irrit</td>
</tr>
<tr>
<td>Values (TLV)</td>
<td>acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following materials had no OELs on our records
- water: CAS:7732-18-5

PERSONAL PROTECTION
RESPIRATOR

EYE
- Safety glasses with un perforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure
- Chemical goggles: whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted
- Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection.
- Alternatively a gas mask may replace splash goggles and face shields.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and desorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

HANDS/FEET
- Elbow length PVC gloves
- When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
- Neoprene rubber gloves

OTHER
- Overalls.
- PVC Apron.
- PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Ensure there is ready access to a safety shower.

ENGINEERING CONTROLS
- Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:
- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.
- Employers may need to use multiple types of controls to prevent employee overexposure.
- Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations.
- Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

<table>
<thead>
<tr>
<th>Type of Contaminant</th>
<th>Air Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent, vapours, degreasing etc., evaporating from tank (in still air)</td>
<td>0.25-0.5 m/s (50-100 f/min.)</td>
</tr>
</tbody>
</table>
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyor transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) 0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) 1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion) 2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range
1: Room air currents minimal or favourable to capture
2: Contaminants of low toxicity or of nuisance value only.
3: Intermittent, low production.
4: Large hood or large air mass in motion

Upper end of the range
1: Disturbing room air currents
2: Contaminants of high toxicity
3: High production, heavy use
4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Liquid.
Mixes with water.
Corrosive.
Acid.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Liquid</td>
</tr>
<tr>
<td>Molecular Weight</td>
<td>46.03</td>
</tr>
<tr>
<td>Melting Range (°F)</td>
<td>46</td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>212-214</td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>140 (69 DG Cd.)</td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>813</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>57</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>18</td>
</tr>
<tr>
<td>Volatile Component (% vol)</td>
<td>Not available.</td>
</tr>
<tr>
<td>Viscosity</td>
<td></td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>Miscible</td>
</tr>
<tr>
<td>pH (1% solution)</td>
<td>Not Available.</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Vapor Pressure (mmHg)</td>
<td>23.027 @ 20 deg.C</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>1.21 @ 20 deg.C</td>
</tr>
<tr>
<td>Relative Vapour Density (air=1)</td>
<td>1.6</td>
</tr>
<tr>
<td>Evaporation Rate</td>
<td>0.4 (CCl4=1)</td>
</tr>
</tbody>
</table>

Material Value

FORMIC ACID:

log Kow -1.55- -0.22

APPEARANCE

Liquid with pungent, penetrating odour. Miscible with water, alcohol, ether and glycerol.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of heat source and ignition source
- Contact with alkaline material liberates heat
- Presence of incompatible materials.
- Product is considered stable.
• Hazardous polymerisation will not occur.
 Undergoes slow decomposition at room temperature, and will build up pressure in a sealed, unvented container.

STORAGE INCOMPATIBILITY
• Reacts with mild steel, galvanised steel / zinc producing hydrogen gas which may form an explosive mixture with air.
• Avoid any contamination of this material as it is very reactive and any contamination is potentially hazardous

Formic acid:
• reacts explosively or violently strong oxidisers, with hydrogen peroxide, furfuryl alcohol, hypochlorites, isocyanides, nitromethane, chromic acid, nitric acid, phosphorus pentoxide, strong bases thallium nitrate, nitromethane.
• reacts with concentrated sulfuric acid to produce carbon dioxide
• is incompatible with alkalies, ammonia, aliphatic amines, alkanolamines, furfuryl alcohol, isocyanates, alkylene oxides, epichlorohydrin, palladium
• is a strong reducing agent
• attacks aluminium, cast iron and steel, some plastics, rubber and coatings
• slowly decomposes in storage forming carbon dioxide gas
• Avoid strong bases.
• Segregate from alkalies, oxidising agents and chemicals readily decomposed by acids, i.e. cyanides, sulfides, carbonates.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

formic acid C-13

TOXICITY AND IRRITATION
• unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.
• Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

FORMIC ACID C-13:
• The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.
• The material may produce respiratory tract irritation, and result in damage to the lung including reduced lung function.
• The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

FORMIC ACID:

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (rat) LD50: 1100 mg/kg</td>
<td>Skin (rabbit): 610 (open) - Mild</td>
</tr>
<tr>
<td>Inhalation (rat) LC50: 15000 mg/m³/15m</td>
<td>Eye (rabbit): 122 mg - SEVERE</td>
</tr>
<tr>
<td>Intravenous (Rabbit) LD: 239 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Oral (Human) TDLo: 2200 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Oral (Mouse) LD50: 700 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Intraperitoneal (Mouse) LD50: 940 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Intravenous (Mouse) LD50: 145 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Oral (Human) LD: 2.44 mg/kg</td>
<td></td>
</tr>
</tbody>
</table>
• The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.
• The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

WATER:
• No significant acute toxicological data identified in literature search.

CARCINOGEN
formic acid US - Rhode Island Hazardous Substance List IARC
Section 12 - ECOLOGICAL INFORMATION

This material and its container must be disposed of as hazardous waste.

Ecotoxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
<th>Bioaccumulation</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>formic acid</td>
<td>LOW</td>
<td>No Data Available</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
</tbody>
</table>

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions

A. General Product Information
Corrosivity characteristic: use EPA hazardous waste number D002 (waste code C)

B. Component Waste Numbers
When formic acid is present as a solid waste as a discarded commercial chemical product, off-specification species, as a container residue, or as a spill residue, use EPA waste number U123 (waste code C,T).

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.
Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:
- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.
- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Treat and neutralise at an approved treatment plant. Treatment should involve: Neutralisation with soda-ash or soda-lime followed by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or incineration in a licenced apparatus
- Decontaminate empty containers with 5% aqueous sodium hydroxide or soda ash, followed by water. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

DOT:

<table>
<thead>
<tr>
<th>Symbols:</th>
<th>Hazard class or Division:</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identification Numbers:</th>
<th>PG:</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN1779</td>
<td>II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Label Codes:</th>
<th>Special provisions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>8, 3</td>
<td>B2, B28, IB2, T7, TP2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Packaging: Exceptions:</th>
<th>Packaging: Non-bulk:</th>
</tr>
</thead>
<tbody>
<tr>
<td>154</td>
<td>202</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Packaging: Exceptions:</th>
<th>Quantity limitations:</th>
</tr>
</thead>
<tbody>
<tr>
<td>154</td>
<td>1 L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantity Limitations: Cargo aircraft only:</th>
<th>Vessel stowage: Location:</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 L</td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vessel stowage: Other:</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
</tr>
</tbody>
</table>

Hazardous materials descriptions and proper shipping names:
Formic acid with more than 85% acid by mass

Air Transport IATA:

<table>
<thead>
<tr>
<th>ICAO/IATA Class:</th>
<th>ICAO/IATA Subrisk:</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UN/ID Number:</th>
<th>Packing Group:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1779</td>
<td>II</td>
</tr>
</tbody>
</table>
formic acid C-13 (CAS: 1633-56-3) is found on the following regulatory lists:

Respirators must be NIOSH approved.

Eye and face protection - ANSI Z87.1

1910.138 - Hand Protection

1910.134 - Respiratory Protection

1910.133 - Eye and face protection

1910.132 - Personal Protective Equipment - General requirements

OSHA Standards - 29 CFR:

- 1910.122 - Occupational Exposure Limits
- 1910.123 - Eye and face protection
- 1910.124 - Respiratory protection
- 1910.126 - Occupational foot protection
- 1910.128 - Hand protection

Foot protection - ANSI Z41

Respirators must be NIOSH approved.