Tetra(ethylene glycol) diacrylate

sc-229386

Material Safety Data Sheet

Hazard Alert Code Key:
- **EXTREME**
- **HIGH**
- **MODERATE**
- **LOW**

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Tetra(ethylene glycol) diacrylate

STATEMENT OF HAZARDOUS NATURE
Considered a hazardous substance according to OSHA 29 CFR 1910.1200.

NFPA

Section 2 - HAZARDS IDENTIFICATION

SYNONYMS

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK
Harmful by inhalation, in contact with skin and if swallowed.
Irritating to eyes, respiratory system and skin. Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
■ Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
■ The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion.

EYE
■ This material can cause eye irritation and damage in some persons.
■ The material can produce chemical burns to the eye following direct contact. Vapors or mists may be extremely irritating.

SKIN
■ This material can cause inflammation of the skin on contact in some persons.
■ Skin contact with the material may be harmful; systemic effects may result following absorption.
■ The material can produce chemical burns following direct contact with the skin.
■ All multifunctional acrylates (MFA) produce skin disorders and sensitize the skin and inflammation. Vapors generated by the heat of milling may occur in sufficient concentration to produce inflammation. Because exposure to industrial aerosols of MFA includes exposure to resin systems, photo-initiators, solvents, hydrogen-transfer agents, stabilizers, surfactants, fillers and polymerization inhibitors, poisoning may arise due to a range of chemical actions.
■ Open cuts, abraded or irritated skin should not be exposed to this material.
■ Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
■ If inhaled, this material can irritate the throat and lungs of some persons.
■ Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful.
■ Inhalation hazard is increased at higher temperatures.
■ No report of respiratory illness in humans as a result of exposure to multifunctional acrylates has been found.
■ Acute effects from inhalation of high vapor concentrations may be chest and nasal irritation with coughing, sneezing, headache and even nausea.

CHRONIC HEALTH EFFECTS
■ Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis.
■ Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. There is some evidence that inhaling this product is more likely to cause a sensitization reaction in some persons compared to the general population.
■ There is limited evidence that skin contact with this product is more likely to cause a sensitization reaction in some persons compared to the general population.
■ Sensitization may give severe responses to very low levels of exposure, i.e. hypersensitivity. Sensitized persons should not be allowed to work in situations where exposure may occur.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

<table>
<thead>
<tr>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability:</td>
<td>1</td>
</tr>
<tr>
<td>Toxicity:</td>
<td>2</td>
</tr>
<tr>
<td>Body Contact:</td>
<td>3</td>
</tr>
<tr>
<td>Reactivity:</td>
<td>2</td>
</tr>
<tr>
<td>Chronic:</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>tetraethylene glycol diacylate</td>
<td>17831-71-9</td>
<td>>98</td>
</tr>
</tbody>
</table>

inhibitor as 4-methoxyphenol (MEHQ) 150-76-5 0.012 app.
related other acrylate esters 1 max

Section 4 - FIRST AID MEASURES

SWALLOWED
■ For advice, contact a Poisons Information Center or a doctor at once.
■ Urgent hospital treatment is likely to be needed.
■ If swallowed do NOT induce vomiting.
■ If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
■ Observe the patient carefully.
■ Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
Give water to rinse out mouth, then provide liquid slowly and as much as casually can comfortably drink.

EYE
- If this product comes in contact with the eyes:
 - Immediately hold eyelids apart and flush the eye continuously with running water.
 - Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN
- If skin or hair contact occurs:
 - Immediately flush body and clothes with large amounts of water, using safety shower if available.
 - Quickly remove all contaminated clothing, including footwear.
 - Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Center.
- Transport to hospital, or doctor.

INHALED
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor.

NOTES TO PHYSICIAN
- Treat symptomatically.

BASIC TREATMENT
- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for pulmonary edema.
- Monitor and treat, where necessary, for shock.
- Anticipate seizures.
- Where eyes have been exposed, flush immediately with water and continue to irrigate with normal saline during transport to hospital.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
- Skin burns should be covered with dry, sterile bandages, following decontamination.
- DO NOT attempt neutralization as exothermic reaction may occur.

ADVANCED TREATMENT
- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary edema.
- Hypotension with signs of hypovolemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT
- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- Consider endoscopy to evaluate oral injury.
- Consult a toxicologist as necessary.

Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG): <0.13 @ 150 C
Upper Explosive Limit (%): Not available

Specific Gravity (water=1): 1.11 @ 25 C

Lower Explosive Limit (%): Not available

EXTINGUISHING MEDIA
- Water spray or fog.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.

FIRE FIGHTING
- Alert Emergency Responders and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Fight fire from a safe distance, with adequate cover.
- If safe, switch off electrical equipment until vapor fire hazard removed.
- Use water delivered as a fine spray to control the fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
- Combustible.
- Slight fire hazard when exposed to heat or flame.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).
- May emit acrid smoke.
- Mists containing combustible materials may be explosive.

Combustion products include: carbon dioxide (CO2), nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.
- May emit clouds of acrid smoke.
- May emit corrosive fumes.

FIRE INCOMPATIBILITY
- Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION
- **Glasses:** Chemical goggles.
- **Full face-shield.**
- **Gloves:**
- **Respirator:** Type A-P Filter of sufficient capacity

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
- Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material.
- Check regularly for spills and leaks.
- Clean up all spills immediately.
- Avoid breathing vapors and contact with skin and eyes.
- Control personal contact by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- Place in a suitable labeled container for waste disposal.

MAJOR SPILLS
- DO NOT touch the spill material.
- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labeled containers for recycling.
- Neutralize/decontaminate residue.
- Collect solid residues and seal in labeled drums for disposal.
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.
PROTECTIVE ACTIONS FOR SPILL

FOOTNOTES

1. PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2. PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3. INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

4. SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered “small spills”. LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a “one-tonne” compressed gas cylinder.

6. IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

- **AEGL 1**: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

- **AEGL 2**: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

- **AEGL 3**: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Most acrylic monomers have low viscosity therefore pouring, material transfer and processing of these materials do not necessitate heating.
- Viscous monomers may require heating to facilitate handling. To facilitate product transfer from original containers, product must be heated to no more than 60 deg. C. (140 F.), for not more than 24 hours.
- Do NOT use localized heat sources such as band heaters to heat/ melt product.
- Do NOT use steam.
- Hot boxes or hot rooms are recommended for heating/ melting material. The hot box or hot room should be set a maximum temperature of 60 deg. C. (140 F.).
- Do NOT overheat - this may compromise product quality and/or result in an uncontrolled hazardous polymerization.
- If product freezes, heat as indicated above and mix gently to redistribute the inhibitor. Product should be consumed in its entirety after heating/ melting; avoid multiple "reheats" which may affect product quality or result in product degradation.
- Product should be packaged with inhibitor(s). Unless inhibited, product may polymerize, raising temperature and pressure, possibly rupturing container. Check inhibitor level periodically, adding to bulk material if needed. In addition, the product’s inhibitor(s) require the presence of dissolved oxygen. Maintain, at a minimum, the original headspace in the product container and do NOT blanket or mix with oxygen-free gas as it renders the inhibitor ineffective. Ensure air space (oxygen) is present during product heating / melting.
- Store product indoors at temperatures greater than the product’s freezing point (or greater than 0 deg. C. (32 F.),) if no freezing point available and below 38 deg. C (100 F.).
- Avoid prolonged storage (longer than shelf-life) storage temperatures above 38 deg. C (100 F.).
- Store in tightly closed containers in a properly vented storage area away from heat, sparks, open flame, strong oxidisers, radiation and other initiators.
- Prevent contamination by foreign materials.
- Prevent moisture contact.
- Use only non-sparking tools and limit storage time. Unless specified elsewhere, shelf-life is 6 months from receipt.
- DO NOT allow clothing wet with material to stay in contact with skin.
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Avoid contact with moisture.
Avoid contact with incompatible materials.
When handling, DO NOT eat, drink or smoke.
Keep containers securely sealed when not in use.
Avoid physical damage to containers.
Always wash hands with soap and water after handling.
Work clothes should be laundered separately. Launder contaminated clothing before re-use.
Use good occupational work practice.
Observe manufacturer’s storing and handling recommendations.
Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

RECOMMENDED STORAGE METHODS
- Lined metal can, Lined metal pail/drum
- Plastic pail
- Polyliner drum
- Packing as recommended by manufacturer.
- Check all containers are clearly labeled and free from leaks.
For low viscosity materials
- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.
For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):
- Removable head packaging;
- Cans with friction closures and
- low pressure tubes and cartridges may be used.
- Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting molded plastic box and the substances are not incompatible with the plastic.

STORAGE REQUIREMENTS
- Polymerization may occur slowly at room temperature.
- Storage requires stabilizing inhibitor content and dissolved oxygen content to be monitored. Refer to manufacturer's recommended levels.
- DO NOT overfill containers so as to maintain free head space above product.
- Blanketing or sparging with nitrogen or oxygen free gas will deactivate stabilizer.
- Store below 38 deg. C.
- Store in original containers.
- Keep containers securely sealed.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer’s storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

X: Must not be stored together
O: May be stored together with specific preventions
+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Peak ppm</th>
<th>Peak mg/m³</th>
<th>TWA F/CC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>US AIHA Workplace Environmental Exposure Levels (WEELs)</td>
<td>tetraethylene glycol diacylate (Tetraethylene Glycol Diacylate)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>skin: DSEN</td>
<td></td>
</tr>
<tr>
<td>Canada - Ontario Occupational Exposure Limits</td>
<td>4-methoxyphenol (MEHQ) (4-Methoxyphenol)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Minnesota Permissible Exposure Limits (PELs)</td>
<td>4-methoxyphenol (MEHQ) (4-Methoxyphenol)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Alberta Occupational Exposure Limits</td>
<td>4-methoxyphenol (MEHQ) (4-Methoxyphenol)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - British Columbia Occupational Exposure Limits</td>
<td>4-methoxyphenol (MEHQ) (4-Methoxyphenol)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants</td>
<td>4-methoxyphenol (MEHQ) (4-Methoxyphenol)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Compound (Chemical)</td>
<td>Limit Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - California Permissible Exposure Limits</td>
<td>4-methoxyphenol (MEHQ)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Tennessee Occupational Exposure Limits</td>
<td>4-methoxyphenol (MEHQ)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US NIOSH Recommended Exposure Limits (RELs)</td>
<td>4-methoxyphenol (MEHQ)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Michigan Exposure Limits for Air</td>
<td>4-methoxyphenol (MEHQ)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Washington Permissible exposure limits</td>
<td>4-methoxyphenol (MEHQ)</td>
<td>5 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Saskatchewan Occupational Health &</td>
<td>4-methoxyphenol (MEHQ)</td>
<td>5 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety Regulations - Contamination Limits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Quebec Permissible Exposure Values</td>
<td>4-methoxyphenol (MEHQ)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Nova Scotia Occupational Exposure</td>
<td>4-methoxyphenol (MEHQ)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Prince Edward Island Occupational</td>
<td>4-methoxyphenol (MEHQ)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL DATA

4-METHOXYPHENOL (MEHQ):

- TETRAETHYLENE GLYCOL DIACRYLATE:
 - For 4-methoxyphenol (MEHQ) MEHQ has caused ocular toxicity in animals and skin depigmentation in rodents and workers. The recommendation for the TLV-TWA arises from documented eye and skin toxicities and by analogy with hydroquinone.
 - TETRAETHYLENE GLYCOL DIACRYLATE:
 - No exposure limits set by NOHSC or ACGIH.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- Chemical goggles.
- Full face shield.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them.

HANDS/FEET

- When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.

NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time
greater than 240 minutes according to EN 374) is recommended.

- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

General warning: Do NOT use latex gloves! Use only recommended gloves - using the wrong gloves may increase the risk:

<table>
<thead>
<tr>
<th>Exposure condition</th>
<th>Short time use; (few minutes less than 0.5 hour) Little physical stress</th>
<th>Medium time use; less than 4 hours Physical stress (opening drums, using tools, etc.)</th>
<th>Long time Cleaning operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of thin nitrile rubber gloves: Nitrile rubber (0.1 mm)</td>
<td>Use of medium thick nitrile rubber gloves Nitrile rubber, NRL (latex) free; <0.45 mm Moderate tactibility ("feel"), powder-free</td>
<td>Nitrile rubber, NRL (latex) free; >0.56 mm low tactibility ("feel"), powder free High price premium protection for most acrylates up to 4 hours Do NOT give adequate protection to low molecular weight monomers at exposures longer than 1 hour</td>
<td></td>
</tr>
<tr>
<td>Excellent tactibility ("feel"), powder-free Disposable Inexpensive Give adequate protection to low molecular weigh acrylic monomers</td>
<td>Disposable Moderate price Gives adequate protection for most acrylates up to 4 hours Do NOT give adequate protection to low molecular weight monomers at exposures longer than 1 hour Avoid use of ketones and acetates in wash-up solutions.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Where none of this gloves ensure safe handling (for example in long term handling of acrylates containing high levels of acetates and/ or ketones, use laminated multilayer gloves.

- Polyethylene gloves

OTHER

- Overalls.
- PVC Apron.
- PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Ensure there is ready access to a safety shower.
- Avoid inhalation.

RESPIRATOR

- Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

<table>
<thead>
<tr>
<th>Breathing Zone Level (volume) ppm</th>
<th>Maximum Protection Factor</th>
<th>Half-face Respirator</th>
<th>Full-Face Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>10</td>
<td>A-1 P</td>
<td>-</td>
</tr>
<tr>
<td>1000</td>
<td>50</td>
<td>-</td>
<td>A-1 P</td>
</tr>
<tr>
<td>5000</td>
<td>50</td>
<td>Airline*</td>
<td>-</td>
</tr>
<tr>
<td>5000</td>
<td>100</td>
<td>-</td>
<td>A-2 P</td>
</tr>
<tr>
<td>10000</td>
<td>100</td>
<td>-</td>
<td>A-3 P</td>
</tr>
<tr>
<td>100+</td>
<td>100+</td>
<td>Airline* **</td>
<td></td>
</tr>
</tbody>
</table>

* - Continuous Flow ** - Continuous-flow or positive pressure demand.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

- General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in special circumstances. If risk of overexposure exists, wear an approved respirator An approved respirator (supplied air type) may be required in special circumstances. Correct fit is essential to ensure adequate protection. Provide adequate ventilation in warehouses and enclosed storage areas.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

<table>
<thead>
<tr>
<th>Type of Contaminant:</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent, vapors, degreasing etc., evaporating from tank (in still air).</td>
<td>0.25-0.5 m/s (50-100 f/min)</td>
</tr>
<tr>
<td>aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)</td>
<td>0.5-1 m/s (100-200 f/min.)</td>
</tr>
<tr>
<td>direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>1-2.5 m/s (200-500 f/min.)</td>
</tr>
<tr>
<td>grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion)</td>
<td>2.5-10 m/s (500-2000 f/min.)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

- Lower end of the range
- Upper end of the range

1: Room air currents minimal or favorable to capture

1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only. 2: Contaminants of high toxicity
3: Intermittent, low production. 3: High production, heavy use
4: Large hood or large air mass in motion 4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 ft/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES
Mixes with water.
Corrosive.

<table>
<thead>
<tr>
<th>State</th>
<th>LIQUID</th>
<th>Molecular Weight</th>
<th>302.36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Range (°F)</td>
<td>53.6- 62.6</td>
<td>Viscosity</td>
<td>Not Available</td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>>599</td>
<td>Solubility in water (g/L)</td>
<td>Miscible</td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>347</td>
<td>pH (1% solution)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>Not available</td>
<td>pH (as supplied)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>Not available</td>
<td>Vapour Pressure (mmHG)</td>
<td><0.13 @ 150 C</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available</td>
<td>Specific Gravity (water=1)</td>
<td>1.11 @ 25 C</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
<td>Relative Vapor Density (air=1)</td>
<td>> 1.0</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td><1</td>
<td>Evaporation Rate</td>
<td>Negligible</td>
</tr>
</tbody>
</table>

APPEARANCE
Amber liquid with low volatility and odour; does not mix well with water (1-5%).

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY
- Polymerisation may occur at elevated temperatures.
- Polymerisation may be accompanied by generation of heat as exotherm.
- Process is self accelerating as heating causes more rapid polymerisation.
- Exotherm may cause boiling with generation of acid, toxic and flammable vapour.
- Polymerization and exotherm may be violent if contamination with strong acids, amines or catalysts occurs.
- Polymerization and exotherm of material in bulk may be uncontrollable and result in rupture of storage tanks.
- Polymerization may occur if stabilizing inhibitor becomes depleted by aging.
- Stabilizing inhibitor requires dissolved oxygen to be present in liquid for effective action.
- Specific storage requirements must be met for stability on ageing and transport.

STORAGE INCOMPATIBILITY
- Exposure to light, free radical initiators, iron, rust and strong bases, and storage beyond expiration date, may initiate polymerization.
- Polymerization may occur slowly at room temperature.
- Storage requires stabilizing inhibitor content and dissolved oxygen content to be monitored. Refer to manufacturer's recommended levels.
- DO NOT overfill containers so as to maintain free head space above product.
- Blanketing or sparging with nitrogen or oxygen free gas will deactivate stabilizer.
- Store below 38 deg. C.
- Stable under controlled storage conditions provided material contains adequate stabilizer / polymerization inhibitor.
- Bulk storages may have special storage requirements
- Dangerous goods of other classes.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION
tetraethylene glycol diacrylate

TOXICITY AND IRRITATION
- unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY

<table>
<thead>
<tr>
<th>Dermal (rabbit) LD50:</th>
<th>>3000 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (Rat) LD50:</td>
<td>813 mg/kg</td>
</tr>
</tbody>
</table>

IRRITATION

| Skin (rabbit): 500 mg/24h | Moderate |
| Eye (rabbit): 100 mg | SEVERE |

UV (ultraviolet)/ EB (electron beam) acrylates are generally of low toxicity
UV/EB acrylates are divided into two groups; "stenomeric" and "eurymeric" acrylates.
The first group consists of well-defined acrylates which can be described by a simple idealised chemical; they are low molecular weight species with a very narrow weight distribution profile. The eurymeric acrylates cannot be described by an idealised structure and may differ fundamentally between various suppliers; they are of relatively high molecular weight and possess a wide weight distribution. Stenomeric acrylates are usually more hazardous than the eurymeric substances. Stenomeric acrylates are also well defined which allows comparison and exchange of toxicity data - this allows more accurate classification.

The stenomers cannot be classified as a group; they exhibit substantial variation. The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

Asthma-like symptoms may continue for months or even years after exposure to the material cease. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance.

Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Where no "official" classification for acrylates and methacrylates exists, there has been cautious attempts to create classifications in the absence of contrary evidence. For example, monoalkyl or monoaryl esters of acrylic acid should be classified as R36/37/38 and R51/53. Monoalkyl or monoary esters of methacrylic acid should be classified as R36/37/38.

Based on the available oncogenicity data and without a better understanding of the carcinogenic mechanism the Health and Environmental Review Division (HERD) of the US EPA previously concluded that all chemicals that contain the acrylate or methacrylate moiety (CH2=CHCOO or CH2=C(CH3)COO) should be considered to be a carcinogenic hazard unless shown otherwise by adequate testing. This position has now been revised and acrylates and methacrylates are no longer de facto carcinogens. (S.D. +/- 126.4 mg/kg) Eye (rabbit): 100 mg - SEVERE (at 24 hours) *

Skin tumours recorded. Equivocal tumorgen by RTECS criteria.

4-METHOXYPHENOL (MEHQ):

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (rat) LD50: 1600 mg/kg</td>
<td>Skin (rabbit): 6000 mg/12d-I Mild</td>
</tr>
</tbody>
</table>

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's edema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitization potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitizing substance which is widely distributed can be a more important allergen than one with stronger sensitizing potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

SKIN

<table>
<thead>
<tr>
<th>Substance</th>
<th>US AIHA Workplace Environmental Exposure Levels (WEELs) - Skin</th>
<th>Canada - Quebec Permissible Exposure Values for Airborne Contaminants - Skin (French)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetraethylene glycol diacrylate</td>
<td>Notes skin; DSEN</td>
<td>Notes skin; DSEN</td>
</tr>
</tbody>
</table>

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

4-METHOXYPHENOL (MEHQ):

TETRAETHYLENE GLYCOL DIACRYLATE:

■ Do NOT discharge into sewer or waterways.

TETRAETHYLENE GLYCOL DIACRYLATE:

■ Toxic to aquatic organisms.

■ Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Waste resulting from use of the product must be disposed of on site or at approved waste sites.

■ May cause long-term adverse effects in the aquatic environment.

■ Substances containing unsaturated carbons are ubiquitous in indoor environments. They result from many sources (see below). Most are reactive with environmental ozone and many produce stable products which are thought to adversely affect human health. The potential for surfaces in an enclosed space to facilitate reactions should be considered.

Source of unsaturated substances

<table>
<thead>
<tr>
<th>Unsaturated substances (Reactive Emissions)</th>
<th>Major Stable Products produced following reaction with ozone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoprene, nitric oxide, squalene, unsaturated sterols, oleic acid and other unsaturated fatty acids, unsaturated oxidation products</td>
<td>Methacrolein, methyl vinyl ketone, nitrogen dioxide, acetone, 6MHG, geranyl acetone, 4OPA, formaldehyde, nonanol, decanal, 9-oxo-nonanoic acid, azelaic acid, nonanoic acid.</td>
</tr>
</tbody>
</table>

Occupants (exhaled breath, ski oils, personal care products)

| Isopropene, limonene, alpha-pinene, other | Formaldehyde, 4-AMC, pinoaldehyde, piroxic acid, pinoacid, formic acid |

Soft woods, wood flooring, including
cypress, cedar and silver fir boards, houseplants
- Isoprene, limonene, alpha-pinene, other terpenes and sesquiterpenes
- pinic acid, pinonic acid, formic acid, methacrolein, methyl vinyl ketone, SOAs including ultrafine particles

Carpets and carpet backing
- 4-Phenylcyclohexene, 4-vinylcyclohexene, styrene, 2-ethylhexyl acrylate, unsaturated fatty acids and esters
- Formaldehyde, acetaldehyde, benzaldehyde, hexanal, nonanal, 2-nonenal

Linoleum and paints/polishes containing linseed oil
- Linoleic acid, linolenic acid
- Propanal, hexanal, nonanal, 2-heptenal, 2-nonenal, 2-decenal, 1-pentene-3-one, propionic acid, n-butyric acid

Latex paint
- Residual monomers
- Formaldehyde

Certain cleaning products, polishes, waxes, air fresheners
- Limonene, alpha-pinene, terpinolene, alpha-terpineol, linalool, linalyl acetate and other terpenoids, longifolene and other sesquiterpenes
- Formaldehyde, acetaldehyde, glycoaldehyde, formic acid, acetic acid, hydrogen and organic peroxides, acetone, benzaldehyde, 4-hydroxy-4-methyl-5-hexen-1-ol, 5-ethylidihydro-5-methyl-2(3H)-furanone, 4-AMC, SOAs including ultrafine particles

Natural rubber adhesive
- Isoprene, terpenes
- Formaldehyde, methacrolein, methyl vinyl ketone

Photocopier toner, printed paper, styrene polymers
- Styrene
- Formaldehyde, benzaldehyde

Environmental tobacco smoke
- Styrene, acrolein, nicotine
- Formaldehyde, benzaldehyde, hexanal, glyoxal, N-methylformamide, nicothaldehyde, cotinine

Soiled clothing, fabrics, bedding
- Squalene, unsaturated sterols, oleic acid and other saturated fatty acids
- Acetone, geranyl acetone, 6MHQ, 4OPA, formaldehyde, nonanal, decanal, 9-oxo-noranoic acid, azelaic acid, nonanoic acid

Soiled particle filters
- Unsaturated fatty acids from plant waxes, leaf litter, and other vegetative debris; soot; diesel particles
- Formaldehyde, nonanal, and other aldehydes; azelaic acid; nonanoic acid; 9-oxo-noranoic acid; compounds with mixed functional groups (=O, -OH, and -COOH)

Ventilation ducts and duct liners
- Unsaturated fatty acids and esters, unsaturated oils, neoprene
- C5 to C10 aldehydes

"Urban grime"
- Polycyclic aromatic hydrocarbons
- Oxidized polycyclic aromatic hydrocarbons

Perfumes, colognes, essential oils (e.g. lavender, eucalyptus, tea tree)
- Limonene, alpha-pinene, linalool, linalyl acetate, terpinene-4-ol, gamma-terpinene
- Formaldehyde, 4-AMC, acetone, 4-hydroxy-4-methyl-5-hexen-1-ol, 5-ethylidihydro-5-methyl-2(3H)-furanone, SOAs including ultrafine particles

Overall home emissions
- Limonene, alpha-pinene, styrene
- Formaldehyde, 4-AMC, pinonaldehyde, acetone, pinic acid, pinonic acid, formic acid, benzaldehyde, SOAs including ultrafine particles

Abbreviations: 4-AMC, 4-acetyl-1-methylcyclohexene; 6MHQ, 6-methyl-5-heptene-2-one, 4OPA, 4-oxopentanal, SOA, Secondary Organic Aerosols
Reference: Charles J Weschler; Environmental Helath Perspectives, Vol 114, October 2006.
- Ecotoxicity of acrylates is a function of n-octanol/water partition coefficient (log Pow, log Kow). Compounds with a log Pow >5 exhibit simple narcosis, but at lower log Pow the toxicity of acrylates is greater than predicted for simple narcotics.
- Prevent, by any means available, spillage from entering drains or watercourses.

4-METHOXYPHENOL (MEHQ):
- Fish LC50 (96hr.) (mg/l):
 - 200 (48hr)
- log Pow (Verschueren 1983):
 - 1.34
Degradation Biological: by soil microflora 16 days

Ecotoxicity

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions
A. General Product Information
- Corrosivity characteristic: use EPA hazardous waste number D002 (waste code C)

Disposal Instructions
- All waste must be handled in accordance with local, state and federal regulations.
- Puncture containers to prevent re-use and bury at an authorized landfill.
- Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction,
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use,
and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Treat and neutralize at an approved treatment plant.
- Treatment should involve: Neutralization followed by: Burial in a licensed land-fill or Incineration in a licensed apparatus
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

DOT:

Symbols:	None
Identification Numbers:	UN1760
Label Codes:	8
Packaging: Exceptions:	154
Quantity Limitations: Cargo aircraft only:	60 L
Vessel stowage: Other:	40

Identification: Corrosive liquid, n.o.s.

Air Transport IATA:

ICAO/IATA Class:	8
UN/ID Number:	1760
Special provisions:	A3

Shipping Name: CORROSIVE LIQUID, N.O.S. *(CONTAINS TETRAETHYLENE GLYCOL DIACRYLATE)*

Maritime Transport IMDG:

IMDG Class:	8
UN Number:	1760
EMS Number:	F-A,S-B

Limited Quantities: 5 L

Shipping Name: CORROSIVE LIQUID, N.O.S.(contains tetraethylene glycol diacylate)

Section 15 - REGULATORY INFORMATION

tetraethylene glycol diacrylate (CAS: 17831-71-9) is found on the following regulatory lists:

- "Canada Domestic Substances List (DSL)"
- "US - Minnesota Hazardous Substance List"
- "US AIHA Workplace Environmental Exposure Levels (WEELs)"
- "US DOE Temporary Emergency Exposure Limits (TEELs)"
- "US EPA Master Testing List - Index I Chemicals Listed"
- "US EPA Master Testing List - Index II Chemicals Removed"
- "US Toxic Substances Control Act (TSCA) - Inventory"

Regulations for ingredients

4-methoxyphenol (MEHQ) (CAS: 150-76-5) is found on the following regulatory lists:

- "Canada - Alberta Occupational Exposure Limits"
- "Canada - British Columbia Occupational Exposure Limits"
- "Canada - Nova Scotia Occupational Exposure Limits"
- "Canada - Ontario Occupational Exposure Limits"
- "Canada - Prince Edward Island Occupational Exposure Limits"
- "Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)"
- "Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits"
- "Canada Ingredient Disclosure List (SOR/88-64)"
- "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)"
- "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (French)"
- "OECD Representative List of High Production Volume (HPV) Chemicals"
- "US - California Occupational Safety and Health Regulations (CAL/OSHA) - Hazardous Substances List"
- "US - California Permissible Exposure Limits for Chemical Contaminants"
- "US - Connecticut Hazardous Air Pollutants"
- "US - Hawaii Air Contaminant Limits"
- "US - Massachusetts Oil & Hazardous Material List"
- "US - Michigan Exposure Limits for Air Contaminants"
- "US - Minnesota Hazardous Substance List"
- "US - Minnesota Permissible Exposure Limits (PELs)"
- "US - New Jersey Right to Know Hazardous Substances"
- "US - Pennsylvania - Hazardous Substance List"
- "US - Rhode Island Hazardous Substance List"
- "US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants"
- "US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants"
- "US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants"
- "US ACGIH Threshold Limit Values (TLV)"
- "US Cosmetic Ingredient Review (CIR) Ingredients found unsafe for use in cosmetics"
- "US DOE Temporary Emergency Exposure Limits (TEELs)"
- "US EPA High Production Volume Program Chemical List"
- "US EPA Master Testing List - Index I Chemicals Listed"
- "US NIOSH Recommended Exposure Limits (RELs)"
- "US Toxic Substances Control Act (TSCA) - Inventory"
- "US TSCA Section 12(b) - List of Chemical Substances Subject to Export Notification Requirements"
- "US TSCA Section 4/12 (b) - Sunset Date/Status"
- "US TSCA Section 8 (a) - Preliminary Assessment Information Rules (PAIR) - Reporting List"
Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Cumulative effects may result following exposure*.
- Possible respiratory and skin sensitizer*.

* (limited evidence).

Denmark Advisory list for selfclassification of dangerous substances

Substance CAS Suggested codes 4- methoxyphenol (MEHQ) 150- 76- 5 Xn Carc3; R40 R52/53

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Jan-1-2010
Print Date: Apr-22-2010