sc-232147

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

3,5,5-Trimethyl-1-hexanol

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Company: Santa Cruz Biotechnology, Inc.

Address:

2145 Delaware Ave Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and Canada:

877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436 2255

(1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

Synthetic lubricants, lubricating oil additives, wetting agent, softener in the manufacture of plastics, disinfectants and germicides.

SYNONYMS

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW RISK

Harmful if swallowed.

Irritating to eyes.

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

sc-232147

Material Safety Data Sheet

The Power to Oscotion

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

SWALLOWED

- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- Overexposure to non-ring alcohols causes nervous system symptoms. These include headache, muscle weakness and inco-ordination, giddiness, confusion, delirium and coma. Digestive symptoms may include nausea, vomiting and diarrhea. Aspiration is much more dangerous than ingestion because lung damage can occur and the substance is absorbed into the body. Alcohols with ring structures and secondary and tertiary alcohols cause more severe symptoms, as do heavier alcohols.

EYE

■ This material can cause eye irritation and damage in some persons.

SKIN

- Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.
- There is some evidence to suggest that this material can cause inflammation of the skin on contact in some persons.
- Most liquid alcohols appear to act as primary skin irritants in humans. Significant percutaneous absorption occurs in rabbits but not apparently in man.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.
- Inhalation of vapors or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.
- There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
- Aliphatic alcohols with more than 3-carbons cause headache, dizziness, drowsiness, muscle weakness and delirium, central depression, coma, seizures and behavioral changes. Secondary respiratory depression and failure, as well as low blood pressure and irregular heart rhythms, may follow. Nausea and vomiting are seen, and liver and kidney damage is possible as well following massive exposures. Symptoms are more acute the more carbons there are in the alcohol.
- Inhalation hazard is increased at higher temperatures.
- Inhalation of high concentrations of gas/vapor causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination.

CHRONIC HEALTH EFFECTS

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

Section 4 - FIRST AID MEASURES

SWALLOWED

• IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.

sc-232147

Material Safety Data Sheet

The Power to Oscotion

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

- Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
- For advice, contact a Poisons Information Center or a doctor.
- Urgent hospital treatment is likely to be needed.
- If conscious, give water to drink.
- INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down
 position, if possible) to maintain open airway and prevent aspiration.

NOTE: Wear a protective glove when inducing vomiting by mechanical means.

- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

FYF

- If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- If pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear
- Flush skin and hair with running water (and soap if available).
- · Seek medical attention in event of irritation.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained.
 Perform CPR if necessary.
- Transport to hospital, or doctor.

NOTES TO PHYSICIAN

- To treat poisoning by the higher aliphatic alcohols:
- Gastric lavage with copious amounts of water.
- It may be beneficial to instill 60 ml of mineral oil into the stomach.
- Oxygen and artificial respiration as needed.
- Electrolyte balance: it may be useful to start 500 ml. M/6 sodium bicarbonate intravenously but maintain a cautious and conservative attitude toward electrolyte replacement unless shock or severe acidosis threatens.
- To protect the liver, maintain carbohydrate intake by intravenous infusions of glucose.
- Hemodialysis if coma is deep and persistent. [GOSSELIN, SMITH HODGE: Clinical Toxicology of Commercial Products, Ed 5)

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 t0 15 l/min.
- Monitor and treat, where necessary, for shock.
- Monitor and treat, where necessary, for pulmonary edema.
- Anticipate and treat, where necessary, for seizures.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
- Give activated charcoal.

ADVANCED TREATMENT

ADVANCED TREATMENT

Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.

sc-232147

Material Safety Data Sheet

The Power to Questio

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolemia are present use lactated Ringers solution. Fluid overload might create complications.
- If the patient is hypoglycemic (decreased or loss of consciousness, tachycardia, pallor, dilated pupils, diaphoresis and/or dextrose strip or glucometer readings below 50 mg), give 50% dextrose.
- Hypotension with signs of hypovolemia requires the cautious administration of fluids. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary edema.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- Acidosis may respond to hyperventilation and bicarbonate therapy.
- Hemodialysis might be considered in patients with severe intoxication.
- Consult a toxicologist as necessary. BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

	Section 5 - FIRE FIGHTING MEASURES	
Vapour Pressure (mmHG):	Not available	
Upper Explosive Limit (%):	Not available	
Specific Gravity (water=1):	0.824	
Lower Explosive Limit (%):	Not available	

EXTINGUISHING MEDIA

- Alcohol stable foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

FIRE FIGHTING

.

- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- Do not approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible
- Slight fire hazard when exposed to heat or flame.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).
- May emit acrid smoke.
- Mists containing combustible materials may be explosive.

Combustion products include: carbon dioxide (CO2), other pyrolysis products typical of burning organic material.

sc-232147

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

Respirator:

Type A Filter of sufficient capacity

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Environmental hazard contain spillage.
- · Clean up all spills immediately.
- Avoid breathing vapors and contact with skin and eyes.
- Control personal contact by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- Place in a suitable labeled container for waste disposal.

MAJOR SPILLS

■ Environmental hazard - contain spillage.

Chemical Class: alcohols and glycols

For release onto land: recommended sorbents listed in order of priority.

SORBENT TYPE	RANK	APPLICATION	COLLECTION	LIMITATIONS
LAND SPILL - SMALL				
cross-linked polymer - particulate	1	shovel	shovel	R, W, SS
cross-linked polymer - pillow	1	throw	pitchfork	R, DGC, RT
sorbent clay - particulate	2	shovel	shovel	R,I, P
wood fiber - pillow	3	throw	pitchfork	R, P, DGC, RT
treated wood fiber - pillow	3	throw	pitchfork	DGC, RT
foamed glass - pillow LAND SPILL - MEDIUM	4	throw	pichfork	R, P, DGC, RT
cross-linked polymer - particulate	1	blower	skiploader	R,W, SS
polypropylene - particulate	2	blower	skiploader	W, SS, DGC
sorbent clay - particulate	2	blower	skiploader	R, I, W, P, DGC
polypropylene - mat	3	throw	skiploader	DGC, RT
expanded mineral - particulate	3	blower	skiploader	R, I, W, P, DGC
polyurethane - mat Legend	4	throw	skiploader	DGC, RT

DGC: Not effective where ground cover is dense

R; Not reusable

I: Not incinerable

P: Effectiveness reduced when rainy

RT:Not effective where terrain is rugged

SS: Not for use within environmentally sensitive sites

W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control;

R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988.

Moderate hazard.

- Clear area of personnel and move upwind.
 Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.

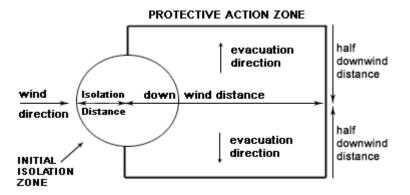
sc-232147

Material Safety Data Sheet

The Power to Questio

Hazard Alert Code Key:

EXTREME


HIGH

MODERATE

LOW

- No smoking, naked lights or ignition sources. Increase ventilation.
- Stop leak if safe to do so.
- · Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labeled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labeled drums for disposal.
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

From IERG (Canada/Australia)

Isolation Distance

Downwind Protection Distance 10 meters

FOOTNOTES

- 1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.
- 2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.
- 3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.
- 4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.
- 5 Guide 171 is taken from the US DOT emergency response guide book.
- 6 IERG information is derived from CANUTEC Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

sc-232147

HIGH

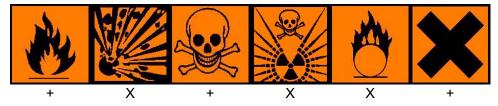
MODERATE

Material Safety Data Sheet

LOW

Hazard Alert Code Key: **EXTREME** • DO NOT allow clothing wet with material to stay in contact with skin

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- · Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.


RECOMMENDED STORAGE METHODS

- Metal can or drum
- Packing as recommended by manufacturer.
- Check all containers are clearly labeled and free from leaks.

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records • 3,5,5-trimethyl-1-hexanol: CAS:3452-97-9

MATERIAL DATA

3,5,5-TRIMETHYL-1-HEXANOL:

■ Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in

sc-232147

Material Safety Data Sheet

The Power in Quantie

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW

determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- · lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- _ . .
- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FFFT

■ Wear chemical protective gloves, eg. PVC.

Wear safety footwear or safety gumboots, eg. Rubber.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- · frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Neoprene gloves

OTHER

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

RESPIRATOR

■ Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Breathing Zone Level ppm (volume)	Maximum Protection Factor	Half-face Respirator	Full-Face Respirator
1000	10	A-1	-
1000	50	-	A-1

sc-232147

Material Safety Data Sheet

The Power to Questio

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW
5000	50	Airline*	-	
5000	100	-	A-2	
10000	100	-	A-3	
	100+		Airline*	* *

^{* -} Continuous Flow ** - Continuous-flow or positive pressure demand.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

■ Local exhaust ventilation usually required. If risk of overexposure exists, wear an approved respirator. Correct fit is essential to obtain adequate protection an approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapors, degreasing etc., evaporating from tank (in still a	air). 0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	filling, 0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conv loading, crusher dusts, gas discharge (active generation into zo rapid air motion)	
grinding, abrasive blasting, tumbling, high speed wheel generat dusts (released at high initial velocity into zone of very high rapimotion).	
Within each range the appropriate value depends on:	
Lower end of the range	Upper end of the range
1: Room air currents minimal or favorable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

l iauid

Does not mix with water.

Floats on water

riodio ori wator.			
State	Liquid	Molecular Weight	144.26
Melting Range (°F)	Not available	Viscosity	Not Available
Boiling Range (°F)	379.4- 381.2	Solubility in water (g/L)	Partly miscible
Flash Point (°F)	177.998	pH (1% solution)	Not applicable.

sc-232147

Material Safety Data Sheet

The Power in Quantie

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW
Decomposition Temp (°F)	Not available	pH (as sup	olied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pre	ssure (mmHG)	Not available
Upper Explosive Limit (%)	Not available	Specific Gr	avity (water=1)	0.824
Lower Explosive Limit (%)	Not available	Relative Va	por Density (air=1)	>1
Volatile Component (%vol)	Not available	Evaporation	n Rate	Not available

APPEARANCE

Clear colourless liquid; does not mix well with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

■ Avoid storage with strong acids, acid chlorides, acid anhydrides, oxidizing agents.

Secondary alcohols and some branched primary alcohols may produce potentially explosive peroxides after exposure to light and/ or heat.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

3,5,5-trimethyl-1-hexanol

TOXICITY AND IRRITATION

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

■ For alkyl alcohols C6-13:

This group of products are very similar in terms of physicochemical and toxicological properties. Interpolation of data can be used to assess the alkyl alcohols for which data is not available.

Acute toxicity: All of these alcohols have a low order of toxicity in rats via the oral route. The LD50 for C6-branched and linear alcohols were >3700 mg/kg; LD50s for the C6-8, C7-9, C8-10, C9-11 and C11-14 branched alkyl alcohols were all >2000 mg/kg.

These alcohols have a low order of toxicity via the dermal route. Dermal LD50s were greater tha 2600 mg/kg.

Subchronic toxicity: Repeat dose studies indicate these alcohols have a low order of subchronic toxicity by both the oral and dermal route. Further they demonstrate that these alcohols display a consistent degree of subchronic toxicity by these routes

Developmental toxicity: Studies demonstrate that the alcohols are not selective developmental toxicants by either the oral or inhalation route of exposure. Inhalation of alkyl alcohols C6-13 is a primary concern during industrial use, particularly for lower molecular weight alcohols.

Collectively the weight of evidence demonstrates that these alcohols have a low order of maternal toxicity and do not induce signs of developmental toxicity until maternal toxicity is observed The NOAELs for inhalation reflect the maximum achievable vapour concentration.

Reproductive toxicity: Developmental toxicity studies for several of these alcohols, conducted by the oral route, produce consistent results and demonstrate that these substances do not affect reproductive parameters. Although a slight increase in resorptions was observed in several studies, this occurred only in the highest dose group and in the presence of overt maternal toxicity.

Genotoxicity: The weight of evidence from existing data supports the conclusion that these materials are not genotoxic.

Further data to support this assessment comes from a series of alkyl acetates C6-13. Alkly acetates arre produced from alkyl alcohols and undergo metabolism by esterases to produce acetic acid and the corresponding alkyl alcohol. There is no evidence for genotoxicity with these compounds in a variety of strains of S. typhimurium in the presence or absence of metabolic activation. C6, C6-8, C7-9 and C11-14 alkyl acetates produced negative results in the Ames test.

Based on data for structurally similar substances these alcohols are not expected to be clastogenic. Alkyl acetates can also be used to predict clastogenic potential of a lkyl alcohols. Although there is evidence of cytotoxicity at extremely high doses, no clastogenic activity was seen in a homologous family of alkyl acetates.

Metabolism::Alkyl alcohols are broken down, in the body, by mitochondrial beta-oxidation or by cytochrome P450 omega and and omega-minus oxidation. The alcohol undergoes various oxidative steps to yield other alcohols, ketones, aldehydes, carboxylic acids and carbon dioxide, Data for monohydric, aliphatic alcohols show a systematic variation according to molecular weight in a manner similar to other homologous series. The body handles aliphatioc hydrocarbons in a similar manner via oxidative conversion to alcohols, ketones, and eventual elimination as carbon dioxide and carboxylic acids. The undegraded alcohols can be conjugated either directly or as a metabolite

sc-232147

The Power to Oscotion

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW
------------------------	---------	------	----------	-----

with glucuronic acid, sulfuric acid or glycine and are reapidly excreted. Intermediate aldehydes may be reactive and bind with DNA and/ or proteins.

No significant acute toxicological data identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

3,5,5-TRIMETHYL-1-HEXANOL:

- Toxic to aquatic organisms.
- Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

- May cause long-term adverse effects in the aquatic environment.
- For alkyl alcohols C6-13:

Environmental fate:

Biodegradation data for several alcohols in this group show the potential to biodegrade to a great extent (58-82%) within a standard 28-day test duration; these products are therefore not expected to persist in the environment.

Data suggests that these alcohols are expected to partition primarily to water and soil, however their fate in air is interesting. The majority of the alcohols have relatively low Kow values which suggest that they will not tend to partition to suspended organic matter in air and precipitate to aquatic and terrestrial environmental compartments to a significant extent.

The alkyl alcohols are not expected to hydrolyse at a measurable rate.

Alkyl alcohols have the potential to volatilise. Atmospheric oxidation as a result of hydroxyl radical attack (OH-) may transform these molecule.

Ecotoxicity:

The alkyl alcohols ranging from hexanol, branched and linear, to C11-14 iso-, C13 rich have been shown to produce an expected increasing level of acute toxicity to freshwater fish and invertebrates. Although there is insufficient data to confirm a similar pattern of algal toxicity, based on fish and invertebrate data, a similar level of toxicity is expected from the lower to higher molecular weight products

These alcohols demonstrate a moderate to high degree of aquatic toxicity from the low to high molecular weight products, respectively.

Test	hexanol, branched and linear	alcohols C6-8, branched	alcohols C7-9, branched	alcohols C8-10 iso, C9-rich	alcohols C9-11 iso, C10 rich		alcohols C11-14 iso C13 rich
Fish LC50 (96 h)	97.7 mg/l	34.5 mg/l	14 mg/l	10.1 mg/l	3.1 mg/l	1.2 mg/l	0.42 mg/l

Experimental and modeled data show the potential to cause acute toxicity in Daphnid. EL50/ EC50 (48 h) ranges from 137 to 0.7 with increasing molecular weight

Acute experimental toxicity threshold values are reported for freshwater alga (Scenendesmus quadricauda) and are used as read across data to the C8-10, iso, C9 rich alkyl alcohol product; this result suggests that C9-11, C10 rich, alkyl alcohol has the potential to cause acute toxicity (based on cell growth) at a concentration above 8.5 mg/l.

■ DO NOT discharge into sewer or waterways.

Ecotoxicity

Ingredient Persistence: Water/Soil Persistence: Air Bioaccumulation Mobility 3,5,5-trimethyl1-hexanol LOW HIGH

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

! Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been

sc-232147

Material Safety Data Sheet

The Power to Questio

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW
nazaru Alert Coue Key.	EXINEME	піоп	WODERATE	LOW

contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible or consult manufacturer for recycling options.
- Consult Waste Management Authority for disposal.
- Bury or incinerate residue at an approved site.
- Recycle containers if possible, or dispose of in an authorized landfill.

Section 14 - TRANSPORTATION INFORMATION

DOT:

Symbols:	G	Hazard class or Division:	9
Identification Numbers:	UN3082	PG:	III
Label Codes:	9	Special provisions:	8, 146, 335, IB3, T4, TP1, TP29
Packaging: Exceptions:	155	Packaging: Non-bulk:	203
Packaging: Exceptions:	155	Quantity limitations: Passenger aircraft/rail:	No limit
Quantity Limitations: Cargo aircraft only:	No limit	Vessel stowage: Location:	Α
Vessel stowage: Other:	None		
Vessel stowage: Other:			

Hazardous materials descriptions and proper shipping names:

Environmentally hazardous substance, liquid, n.o.s

Air Transport IATA:

ICAO/IATA Class:	9	ICAO/IATA Subrisk:	獨-
UN/ID Number:	3082	Packing Group:	III
Special provisions:	A97		

Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. *(CONTAINS 3,5,5-TRIMETHYL-1-HEXANOL)

Maritime Transport IMDG:

IMDG Class:	9	IMDG Subrisk:	None
UN Number:	3082	Packing Group:	III
EMS Number:	F-A,S-F	Special provisions:	274 909 944
Limited Quantities:	51		

Limited Quantities: 5 L

Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains 3,5,5-trimethyl-1-hexanol)

Section 15 - REGULATORY INFORMATION

3,5,5-trimethyl-1-hexanol (CAS: 3452-97-9) is found on the following regulatory lists;

"International Council of Chemical Associations (ICCA) - High Production Volume List", "OECD Representative List of High Production Volume (HPV) Chemicals", "US - Pennsylvania - Hazardous Substance List", "US EPA High Production Volume Chemicals Additional List", "US EPA Master Testing List - Index I Chemicals Listed", "US Food Additive Database", "US Toxic Substances Control Act (TSCA) - Inventory"

sc-232147

Material Safety Data Sheet

The Power to Question

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Potentially explosive peroxides may form on standing.*.
- Inhalation may produce health damage*.
- May produce discomfort of the respiratory system and skin*.
- Repeated exposure potentially causes skin dryness and cracking*.
- Vapors potentially cause drowsiness and dizziness*.
- * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Oct-11-2009 Print Date:May-27-2010