Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Bis(2-chloroethyl)amine hydrochloride

STATEMENT OF HAZARDOUS NATURE

NFPA

SUPPLIER
Company: Santa Cruz Biotechnology, Inc.
Address:
2145 Delaware Ave
Santa Cruz, CA 95060
Telephone: 800.457.3801 or 831.457.3800
Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305
Emergency Tel: From outside the US and Canada: +800 2436 2255
(1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE
• Intermediate.

SYNONYMS
POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
• The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion.
• Accidental ingestion of the material may be damaging to the health of the individual.
• Limited evidence exists that the substance may cause irreversible but non-lethal mutagenic effects following a single exposure.
• Absorption of nitrogen mustards from the gastrointestinal tract may produce systemic poisoning. The effects may include prolonged tremor, inco-ordination, and convulsions.
• The killing action of antineoplastic drugs used for cancer chemotherapy is not selective for cancerous cells alone but affect all dividing cells. Acute side effects include loss of appetite, nausea and vomiting, allergic reaction (skin rash, itch, redness, low blood pressure, unwellness and anaphylactic shock) and local irritation. Gout and renal failure can occur.

EYE
• The material can produce chemical burns to the eye following direct contact. Vapors or mists may be extremely irritating.
• If applied to the eyes, this material causes severe eye damage.
• Nitrogen mustards are severely irritating to the eyes and may produce corneal damage and injury to the iris and lens.

SKIN
• The material can produce chemical burns following direct contact with the skin.
• Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
• Nitrogen mustards can cause serious blisters and burns of the skin, causing deep, slow-healing ulcers. High quantities can also cause internal toxic effects.
• Open cuts, abraded or irritated skin should not be exposed to this material.
• Solution of material in moisture on the skin, or perspiration, may markedly increase skin corrosion and accelerate tissue destruction.
• Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
• If inhaled, this material can irritate the throat and lungs of some persons.
• The material is not thought to produce adverse health effects following inhalation (as classified using animal models). Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
• If nitrogen mustard vapors or aerosols are inhaled, there may be irritation of mucous membranes and swelling of the lungs may occur later. They may be absorbed into the body from the lungs, causing effects such as stomach upset, nausea, vomiting and diarrhea, headache, hair loss, bone marrow impairment, damage to the lymph nodes, loss of white blood cells, period irregularities and reduced male fertility. High concentrations can cause damage to the nervous system.
• Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
• Limited evidence exists that the substance may cause irreversible but non-lethal mutagenic effects following a single exposure.

CHRONIC HEALTH EFFECTS
• Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis.
• There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.
• There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects.
• Exposure to the material may result in a possible risk of irreversible effects. The material may produce mutagenic effects in man. This concern is raised, generally, on the basis of appropriate studies with similar materials using mammalian somatic cells in vivo. Such findings are often supported by positive results from in vitro mutagenicity studies.
• Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumonia; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.
• Anti-cancer drugs used for chemotherapy can depress the bone marrow with reduction in the number of white blood cells and platelets and bleeding. Susceptibility to infections and bleeding is increased, which can be life-threatening. Digestive system effects may include inflammation of the mouth cavity, mouth ulcers, esophagus inflammation, abdominal pain and bleeding, diarrhea, bowel ulcers and perforation. Reversible hair loss can result and wound healing may be delayed. Long-term effects on the gonads may cause periods to stop and inhibit sperm production. Most anti-cancer drugs can potentially cause mutations and birth defects, and coupled with the effects of the suppression of the immune system, may also cause cancer.
• Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis).
<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Min/Nil=0
Low=1
Moderate=2
High=3
Extreme=4
Section 4 - FIRST AID MEASURES

SWALLOWED
• For advice, contact a Poisons Information Center or a doctor at once.
• Urgent hospital treatment is likely to be needed.
• If swallowed do NOT induce vomiting.
• If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
• Observe the patient carefully.
• Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
• Give water to rinse out mouth, then provide liquid slowly and as much as casually can comfortably drink.
• Transport to hospital or doctor without delay.

EYE
• If this product comes in contact with the eyes:
 - Immediately hold eyelids apart and flush the eye continuously with running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes.
 - Transport to hospital or doctor without delay.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN
• If skin or hair contact occurs:
 - Immediately flush body and clothes with large amounts of water, using safety shower if available.
 - Quickly remove all contaminated clothing, including footwear.
 - Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Center.
 - Transport to hospital, or doctor.

INHALED
• If fumes or combustion products are inhaled remove from contaminated area.
• Lay patient down. Keep warm and rested.
• Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
• Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained.
• Perform CPR if necessary.
• Transport to hospital, or doctor.

Inhalation of vapors or aerosols (mists, fumes) may cause lung edema. Corrosive substances may cause lung damage (e.g. lung edema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorized by him/her. (ICSC13719).

NOTES TO PHYSICIAN
• Treat symptomatically.
For employees potentially exposed to antineoplastic and/ or cytotoxic agents on a regular basis, a preplacement physical examination and history (noting risk factors) is recommended. Periodic follow-up examinations should also be undertaken and should be overseen by a physician familiar with the toxic effects of the substance and full details of the nature of work undertaken by the employee. Following administration of antineoplastics, control of nausea and vomiting may be attempted by giving phenothiazines such as perphenazine, prochlorperazine, promethazine or thiethylperazine before antineoplastic agents are administered. In bone-marrow depression, transfusion of blood or platelets reduces the risk of life-threatening hemorrhage. Granulocyte transfusions and injection of antibiotics may be necessary to combat infection in the neutropenic patient. Hyperuricemia is avoided by the addition of allopurinol to treatment schedules and measures such as alkalization of the urine and hydration may be adopted. MARTINDALE: The Extra Pharmacopoeia, 28th Edition. for corrosives:

BASIC TREATMENT

Establish a patent airway with suction where necessary.
Watch for signs of respiratory insufficiency and assist ventilation as necessary.
Administer oxygen by non-rebreather mask at 10 l to 15 l/min.
Monitor and treat, where necessary, for pulmonary edema.
Monitor and treat, where necessary, for shock.
Anticipate seizures.
Where eyes have been exposed, flush immediately with water and continue to irrigate with normal saline during transport to hospital.
DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
Skin burns should be covered with dry, sterile bandages, following decontamination.
DO NOT attempt neutralization as exothermic reaction may occur.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary edema.
- Hypotension with signs of hypovolemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- Consider endoscopy to evaluate oral injury.
- Consult a toxicologist as necessary.

<table>
<thead>
<tr>
<th>Section 5 - FIRE FIGHTING MEASURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapour Pressure (mmHG): Negligible</td>
</tr>
<tr>
<td>Upper Explosive Limit (%): Not available</td>
</tr>
<tr>
<td>Specific Gravity (water=1): Not available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%): Not available</td>
</tr>
</tbody>
</table>

EXTINGUISHING MEDIA

- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog - Large fires only.

FIRE FIGHTING

- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen chloride, phosgene, nitrogen oxides (NOx), other pyrolysis products typical of burning organic material. May emit corrosive fumes.

FIRE INCOMPATIBILITY

- Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:
Safety Glasses.
Gloves:
Respirator:
MINOR SPILLS
• It is recommended that areas handling final finished product have cytotoxic spill kits available.

Spill kits should include:
- impermeable body covering,
- shoe covers,
- latex and utility latex gloves,
- goggles,
- approved HEPA respirator,
- disposable dust pan and scoop,
- absorbent towels,
- spill control pillows,
- disposable sponges,
- sharps container,
- disposable garbage bag and
- hazardous waste label

To avoid accidental exposure due to waste handling of cytotoxics:
- Place waste residue in a segregated sealed plastic container.
- Used syringes, needles and sharps should not be crushed, clipped, recapped, but placed directly into an approved sharps container.
- Dispose of any cleanup materials and waste residue according to all applicable laws and regulations e.g. secure chemical landfill disposal.
- Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material.
- Check regularly for spills and leaks.
- Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- Place in suitable containers for disposal.

All personnel likely to involved in a antineoplastic (cytotoxic) spill must receive practical training in:
- the correct procedures for handling cytotoxic drugs or waste in order to prevent and minimize the risk of spills
- the location of the skill kit in the area
- the arrangements for medical treatment of any affected personnel
- the procedure for containment of the spill, and decontamination of personnel and the environment, including the different procedures for major and minor spills
- the procedure for waste disposal according to the nature and extent of the spill

MAJOR SPILLS
•
- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labeled containers for recycling.
- Neutralize/decontaminate residue.
- Collect solid residues and seal in labeled drums for disposal.
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL
Isolation Distance 25 meters
Downwind Protection Distance 250 meters

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.

6 IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- The National Institute of Health (USA) recommends that the preparation of injectable antineoplastic drugs should be performed in a Class II laminar flow biological safety cabinet and that personnel preparing drugs of this class should wear appropriate personal protective gear. Emphasise controls on containment.
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Avoid contact with moisture.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.
- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.
RECOMMENDED STORAGE METHODS

- Glass container.
 - Lined metal can, Lined metal pail/drum
 - Plastic pail
 - Polyliner drum
 - Packing as recommended by manufacturer.
 - Check all containers are clearly labeled and free from leaks.

For low viscosity materials

- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt (23 deg. C) and solids (between 15 C deg. and 40 deg C.):

- Removable head packaging;
- Cans with friction closures and
- low pressure tubes and cartridges may be used.

- Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting molded plastic box and the substances are not incompatible with the plastic.

STORAGE REQUIREMENTS

- Antineoplastics (cytotoxics):
 - should be clearly identifiable to all personnel involved in their handling
 - should be stored in impervious break-resistant containers
 - should be stored in separate, clearly marked storage areas to minimize the risk of breakage, and to limit contamination in the event of leakage.
 - Spill kits should be available in storage areas.
 - Store in original containers.
 - Keep containers securely sealed.
 - Store in a cool, dry, well-ventilated area.
 - Store away from incompatible materials and foodstuff containers.
 - Protect containers against physical damage and check regularly for leaks.
 - Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

<table>
<thead>
<tr>
<th>+</th>
<th>+</th>
<th>+</th>
<th>+</th>
<th>X</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>X: Must not be stored together</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O: May be stored together with specific preventions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+: May be stored together</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records

- bis(2-chloroethyl)amine hydrochloride: CAS:821-48-7

MATERIAL DATA

BIS(2-CHLOROETHYL)AMINE HYDROCHLORIDE:

- Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers’ responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.
It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace. At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

CEL TWA: 0.001 mg/m3.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE
- Chemical protective goggles with full seal
- Shielded mask (gas-type)
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]

HANDS/FEET
- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
 - frequency and duration of contact,
 - chemical resistance of glove material,
 - glove thickness and
dexterity
Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.
Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
- Rubber gloves (nitrile or low-protein, powder-free latex). Employees allergic to latex gloves should use nitrile gloves in preference.
- Double gloving should be considered.
- PVC gloves.
- Protective shoe covers.
- Head covering.

OTHER
- When handling antineoplastic materials, it is recommended that a disposal work-uniform (such as Tyvek or closed front surgical-type gown with knit cuffs) is worn.
- Overalls.
- PVC Apron.
- PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Eyewash unit.
- Ensure there is ready access to a safety shower.
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory. These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.
Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

• For potent pharmacological agents:
 Powders
 To prevent contamination and overexposure, no open handling of powder should be allowed.
 • Powder handling operations are to be done in a powders weighing hood, a glove box, or other equivalent ventilated containment system.
 • In situations where these ventilated containment hoods have not been installed, a non-ventilated enclosed containment hood should be used.
 • Pending changes resulting from additional air monitoring data, up to 300 mg can be handled outside of an enclosure provided that no grinding, crushing or other dust-generating process occurs.
 • An air-purifying respirator should be worn by all personnel in the immediate area in cases where non-ventilated containment is used, where significant amounts of material (e.g., more than 2 grams) are used, or where the material may become airborne (as through grinding, etc.).
 • Powder should be put into solution or a closed or covered container after handling.
 • If using a ventilated enclosure that has not been validated, wear a half-mask respirator equipped with HEPA cartridges until the enclosure is validated for use.

Solutions Handling:

• Solutions can be handled outside a containment system or without local exhaust ventilation during procedures with no potential for aerosolisation. If the procedures have a potential for aerosolisation, an air-purifying respirator is to be worn by all personnel in the immediate area.
• Solutions used for procedures where aerosolisation may occur (e.g., vortexing, pumping) are to be handled within a containment system or with local exhaust ventilation.
• In situations where this is not feasible (may include animal dosing), an air-purifying respirator is to be worn by all personnel in the immediate area. If using a ventilated enclosure that has not been validated, wear a half-mask respirator equipped with HEPA cartridges until the enclosure is validated for use.
• Ensure gloves are protective against solvents in use.

Unless written procedures, specific to the workplace are available, the following is intended as a guide:

• For Laboratory-scale handling of Substances assessed to be toxic by inhalation. Quantities of up to 25 grams may be handled in Class II biological safety cabinets*; Quantities of 25 grams to 1 kilogram may be handled in Class II biological safety cabinets or equivalent containment systems Quantities exceeding 1 kg may be handled either using specific containment, a hood or Class II biological safety cabinet*.
• HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapors.
• The need for respiratory protection should also be assessed where incidental or accidental exposure is anticipated. Dependent on levels of contamination, PAPR, full face air purifying devices with P2 or P3 filters or air supplied respirators should be evaluated. When handling: Quantities of up to 25 grams, an approved respirator with HEPA filters or cartridges should be considered Quantities of 25 grams to 1 kilogram, a half-face negative pressure, full negative pressure, or powered helmet-type air purifying respirator should be considered. Quantities in excess of 1 kilogram, a full face negative pressure, helmet-type air purifying, or supplied air respirator should be considered.

Written procedures, specific to a particular work-place, may replace these recommendations

* For Class II Biological Safety Cabinets, Types B2 or B3 should be considered. Where only Class I, open fronted Cabinets are available, glove panels may be added, Laminar flow cabinets do not provide sufficient protection when handling these materials unless especially designed to do so.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Does not mix with water. Corrosive.

<table>
<thead>
<tr>
<th>State</th>
<th>DIVIDED SOLID</th>
<th>Molecular Weight</th>
<th>178.49</th>
</tr>
</thead>
</table>

Melting Range (°F) 413.6- 417.2 Viscosity Not available
Boiling Range (°F) Not available Solubility in water (g/L) Partly miscible
Flash Point (°F) Not available pH (1% solution) Not available
Decomposition Temp (°F) Not available pH (as supplied) Not applicable
Autoignition Temp (°F) Not available Vapour Pressure (mmHG) Negligible
Upper Explosive Limit (%) Not available. Specific Gravity (water=1) Not available
Lower Explosive Limit (%) Not available Relative Vapor Density (air=1) >1

Volatile Component (%vol) Negligible Evaporation Rate Not applicable

APPEARANCE

Off-white powder; does not mix well with water.

Section 10 - CHEMICAL STABILITY
CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

- Avoid strong bases.
- Avoid reaction with oxidizing agents.
- Dangerous goods of other classes.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

bis(2-chloroethyl)amine hydrochloride

TOXICITY AND IRRITATION

- unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intraperitoneal (rat) LD50: 100 mg/kg</td>
<td>Nil Reported</td>
</tr>
<tr>
<td>Intramuscular (rat) LD50: 160 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Subcutaneous (mouse) LD50: 20 mg/kg</td>
<td></td>
</tr>
</tbody>
</table>

- The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.
- Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure cessation. The disorder is characterised by dyspnea, cough and mucus production.
- The material may produce respiratory tract irritation, and result in damage to the lung including reduced lung function.
- The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

NOTE: Substance has been shown to be mutagenic in at least one assay, or belongs to a family of chemicals producing damage or change to cellular DNA.
- Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis). Foetotoxicity, specific developmental abnormalities (central nervous system, musculoskeletal system) recorded.

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

BIS(2-CHLOROETHYL)AMINE HYDROCHLORIDE:

- For antineoplastics:
 Ecotoxicity:
 Because antineoplastics are genotoxic, mutagenic and carcinogenic concerns are warranted for their potential effect in the environment. There are a number of known mammalian toxic and nausea effects associated with antineoplastic treatment, which could indicate that similar effects, might be expected in non-target mammals, and possibly also in non-target species other than mammals. Total dosage over a whole therapy protocol is approximately 150 mg /kg body weight. Approximately 14-53% of the administered pharmaceutical is excreted unmetabolised into urine.
 Antineoplastics as a class of drugs are of potential concern for environmental impacts, not just for their acute toxicity but perhaps more for their ability to effect subtle genetic changes, the cumulative impact of which over time can lead to more profound ecologic change. Hospitals are the major source of genotoxic drugs, publicly-owned waste-water treatment works (POTWs) that service hospitals, especially multiple hospitals, are likely candidates for releasing these chemicals into surface waters.
 Antineoplastics are highly [geno]toxic compounds, primarily from hospitals, with poor removal from sewage treatment plants (STWs). Antineoplastic agents, antitumour agents primarily used only within hospitals for chemotherapy, are found sporadically and in a range of concentrations, probably because only small amounts are introduced to STWs via domestic sewage because of their long-lived physiologic retention.
 These compounds act as nonspecific alkylating agents (i.e., specific receptors are not involved) and therefore have the potential to act as either acute or long-felt stressors (mutagens carcinogens/ teratogens/ embryotoxins) in any organism.
 Using well-established QSAR modelling techniques almost 1/5 of the commonly used antineoplastics were predicted to be very toxic to algae, and close to 1/3 were predicted to be non-toxic to plants. A third of the compounds were predicted to be very toxic to daphnids, and almost half were predicted to be non-toxic to daphnids. Slightly more than 1/5 were predicted to be very toxic to fish, and 47% were predicted to be non-toxic to fish.
• Prevent, by any means available, spillage from entering drains or watercourses.
• DO NOT discharge into sewer or waterways.

Ecotoxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
<th>Bioaccumulation</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis(2-chloroethyl)amine hydrochloride</td>
<td>HIGH</td>
<td>LOW</td>
<td>MED</td>
<td></td>
</tr>
</tbody>
</table>

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions

A. General Product Information
Corrosivity characteristic: use EPA hazardous waste number D002 (waste code C)

Disposal Instructions
All waste must be handled in accordance with local, state and federal regulations.
• Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. An Hierarchy of Controls seems to be common - the user should investigate:
 ● Reduction
 ● Reuse
 ● Recycling
 ● Disposal (if all else fails)
This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

Antineoplastic (cytotoxic) wastes must be packed directly, ready for incineration, into color-coded, secure, labelled, leak-proof containers sufficiently robust to withstand handling without breaking, bursting or leaking.

Containers of special design are available for particular needs (such as disposal of sharps) and should be used.

Once filled and closed, such containers must never be re-opened.

Immediate containers must bear a nationally accepted symbol or device depicting cytotoxic substances and be labelled with the words: CYTOTOXIC WASTE - INCINERATE in a style of lettering approved by the national/state authority.

Where policies and procedures permit the merging of cytotoxic wastes with medical waste in an outer container used for medical waste, cytotoxic waste must first be placed in identifiable color-coded/labelled cytotoxic containers prior to merging.

Management procedures must ensure that merged medical and cytotoxic waste is subjected to the incineration requirements appropriate for the total destruction of the cytotoxic waste.

WASTE STORAGE OF CYTOTOXIC WASTES For the storage of cytotoxic waste, segregated or merged with medical waste, provide:
- special storage areas with adequate lighting.
- waste security and restriction of access to authorized persons.
- storage areas designed to facilitate easy routine cleaning and maintenance to hygienic standards, or post-spill decontamination.
- storage of cytotoxic waste in standard identifying bins or other appropriate containers.

COLLECTION OF CYTOTOXIC WASTES
- Procedures for the collection of cytotoxic wastes, which are compatible with existing operational needs, and which protect workers, other people and the environment, must be developed.

Waste must be removed from the site by contractors whose workers have been instructed in the protective methods to be used against the hazards involved, and who comply with the safe work practices established by internal and/or national/state policies. Contractors must instruct, train and direct their personnel in the safe and legal handling of cytotoxic wastes. Contractor’s personnel should observe the operating procedures of the waste-generator.

Transport of cytotoxic wastes, through the community, must comply with the appropriate national/state codes.

DESTRUCTION OF CYTOTOXIC WASTES
- Destruction of cytotoxic wastes should be carried out in multi-chambered incinerators, licenced for this purpose, operating at 1100 deg. C. or more, with a residence time of at least 1 second.

Operators must be trained in handling procedures and hazards involved with handling the waste.

Waste which arrives at the incinerator inappropriately packaged should NOT be returned to the waste generator. An authorized representative of the waste generator must attend the incinerator site to rectify the situation.

Section 14 - TRANSPORTATION INFORMATION

<table>
<thead>
<tr>
<th>DOT:</th>
<th>Symbols:</th>
<th>Hazard class or Division:</th>
<th>Identification Numbers:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None</td>
<td>8</td>
<td>UN1759</td>
</tr>
</tbody>
</table>

12 of 13
Corrosive solids, n.o.s.

Air Transport IATA:

<table>
<thead>
<tr>
<th>ICAO/IATA Class:</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN/ID Number:</td>
<td>1759</td>
</tr>
<tr>
<td>Special provisions:</td>
<td>A3</td>
</tr>
</tbody>
</table>

Maritime Transport IMDG:

<table>
<thead>
<tr>
<th>IMDG Class:</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN Number:</td>
<td>1759</td>
</tr>
<tr>
<td>EMS Number:</td>
<td>F-A, S-B</td>
</tr>
<tr>
<td>Limited Quantities:</td>
<td>5 kg</td>
</tr>
</tbody>
</table>

Section 15 - REGULATORY INFORMATION

bis(2-chloroethyl)amine hydrochloride (CAS: 821-48-7) is found on the following regulatory lists:

- Canada Non-Domestic Substances List (NDSL)
- US Toxic Substances Control Act (TSCA) - Inventory

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Ingestion may produce health damage*.
- Cumulative effects may result following exposure*.
- Limited evidence of a carcinogenic effect*.
- May be harmful to the fetus/embryo*.
- Exposure may produce irreversible effects*.
- * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: May-4-2009

Print Date: Jul-9-2010