Daidzein

sc-24001

Material Safety Data Sheet

Hazard Alert Code Key:
- EXTREME
- HIGH
- MODERATE
- LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Daidzein

SYNONYMS
C15-H10-O4, "4H-1-benzopyran-4-one, 7-hydroxy-3-(4-hydroxyphenyl)-", "4H-1-benzopyran-4-one, 7-hydroxy-3-(4-hydroxyphenyl)-", daidzeol, "4', 7-dihydroxyisoflavone", "4', 7-dihydroxyisoflavone", "7, 4' -dihydroxyisoflavone", 7-hydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one, 7-hydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one, "isoflavone, 4', 7-dihydroxy-", "isoflavone, 4', 7-dihydroxy-", K-251B, "genistein analogue", "daidzin aglucon", "phytoestrogen/ phytoestrogen/ phytosterol"

PRODUCT USE
Isolated from red clover and from the mold, Micromonospora halophytica. The aglucon of daidzin (daidzein 7-glucoside), isolated form soybean meal (Soja hispada). An inactive analogue of genistein, a tyrosine kinase inhibitor. A phytoestrogen which may play a role in hormone-produced cancers.

SUPPLIER
Company: Santa Cruz Biotechnology, Inc.
Address:
2145 Delaware Ave
Santa Cruz, CA 95060
Telephone: 800.457.3801 or 831.457.3800
Emergency Tel: Luis Yanez at 831.251.2170

HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Section 2 - HAZARDS IDENTIFICATION

STATEMENT OF HAZARDOUS NATURE

HAZARDOUS SUBSTANCE, NON-DANGEROUS GOODS. According to NOHSC Criteria, and ADG Code.

POISONS SCHEDULE
None

<table>
<thead>
<tr>
<th>RISK</th>
<th>SAFETY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irritating to eyes respiratory system and skin*</td>
<td>Use only in well ventilated areas.</td>
</tr>
<tr>
<td>Possible risk of irreversible effects.</td>
<td>Keep container in a well ventilated place.</td>
</tr>
<tr>
<td>Inhalation may produce health damage*</td>
<td>Avoid exposure - obtain special instructions before use.</td>
</tr>
<tr>
<td>Cumulative effects may result following exposure*</td>
<td>To clean the floor and all objects contaminated by this material use water and detergent.</td>
</tr>
<tr>
<td>Limited evidence of a carcinogenic effect*</td>
<td>Keep away from food drink and animal feeding stuffs.</td>
</tr>
<tr>
<td>May possibly affect fertility*</td>
<td>In case of contact with eyes rinse with plenty of water and contact Doctor or Poisons Information Centre.</td>
</tr>
<tr>
<td>May possibly be harmful to the foetus/embryo*</td>
<td>If swallowed IMMEDIATELY contact Doctor or Poisons Information Centre (show this container or label).</td>
</tr>
</tbody>
</table>
Material Safety Data Sheet

Daidzein

sc-24001

Hazard Alert Code Key:

<table>
<thead>
<tr>
<th>EXTREME</th>
<th>HIGH</th>
<th>MODERATE</th>
<th>LOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>✉ Vapours potentially cause drowsiness and dizziness*.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
* (limited evidence).

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>daidzein</td>
<td>486-66-8</td>
<td>>98</td>
</tr>
<tr>
<td>may contain methanol</td>
<td>67-56-1</td>
<td></td>
</tr>
</tbody>
</table>

Section 4 - FIRST AID MEASURES

SWALLOWED

- Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

EYE

- If this product comes in contact with the eyes:
 - Wash out immediately with fresh running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - If pain persists or recurs seek medical attention.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin contact occurs:
 - Immediately remove all contaminated clothing, including footwear.
 - Flush skin and hair with running water (and soap if available).
 - Seek medical attention in event of irritation.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained.
- Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN

- Treat symptomatically.
- For acute and short term repeated exposures to methanol:
 - Toxicity results from accumulation of formaldehyde/formic acid.
 - Clinical signs are usually limited to CNS, eyes and GI tract. Severe metabolic acidosis may produce dyspnea and profound systemic effects which may become intractable. All symptomatic patients should have arterial pH measured. Evaluate airway, breathing and circulation.
 - Stabilise obtunded patients by giving naloxone, glucose and thiamine.
 - Decontaminate with Ipecac or lavage for patients presenting 2 hours post-ingestion. Charcoal does not absorb well; the usefulness of cathartic is not established.
 - Forced diuresis is not effective; haemodialysis is recommended where peak methanol levels exceed 50 mg/dL (this correlates with serum bicarbonate levels below 18 mEq/L).
 - Ethanol, maintained at levels between 100 and 150 mg/dL, inhibits formation of toxic metabolites and may be indicated when peak methanol levels exceed 20 mg/dL. An intravenous solution of ethanol in D5W is optimal.
 - Folate, as leucovorin, may increase the oxidative removal of formic acid. 4-methylpyrazole may be an effective adjunct in the treatment.
 - Phenytoin may be preferable to diazepam for controlling seizure.
Daidzein

Material Safety Data Sheet

Hazard Alert Code Key:

<table>
<thead>
<tr>
<th>Index</th>
<th>Sampling Time</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Methanol in urine</td>
<td>15 mg/l</td>
<td>End of shift</td>
</tr>
<tr>
<td>2. Formic acid in urine</td>
<td>80 mg/gm creatinine</td>
<td>Before the shift at end of workweek</td>
</tr>
</tbody>
</table>

B: Background levels occur in specimens collected from subjects NOT exposed.
NS: Non-specific determinant - observed following exposure to other materials.

Section 5 - FIRE FIGHTING MEASURES

EXTINGUISHING MEDIA
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog - Large fires only.

FIRE FIGHTING
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

FIRE/EXPLOSION HAZARD
- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited.; once initiated larger particles up to 1400 microns diameter will contribute to the propagation of an explosion.
- A dust explosion may release of large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people.
- Usually the initial or primary explosion takes place in a confined space such as plant or machinery, and can be of sufficient force to damage or rupture the plant. If the shock wave from the primary explosion enters the surrounding area, it will disturb any settled dust layers, forming a second dust cloud, and often initiate a much larger secondary explosion. All large scale explosions have resulted from chain reactions of this type.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.
- All movable parts coming in contact with this material should have a speed of less than 1-meter/sec

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), other pyrolysis products typical of burning organic material.
May emit poisonous fumes.
May emit corrosive fumes.

FIRE INCOMPATIBILITY
- Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

HAZCHEM
None

PERSONAL PROTECTION

3 of 12
Daidzein

sc-24001

Material Safety Data Sheet

Hazard Alert Code Key:

<table>
<thead>
<tr>
<th>EXTREME</th>
<th>HIGH</th>
<th>MODERATE</th>
<th>LOW</th>
</tr>
</thead>
</table>

Glasses: Chemical goggles

Respirator: Type AX-P Filter of sufficient capacity

Section 6 - ACCIDENTAL RELEASE MEASURES

EMERGENCY PROCEDURES

MINOR SPILLS

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS

- Moderate hazard.
- CAUTION: Advise personnel in area.
- Alert Emergency Services and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise Emergency Services.

Personal Protective Equipment advice is contained in Section 8 of the MSDS.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.
- Do NOT cut, drill, grind or weld such containers
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

SUITABLE CONTAINER
Daidzein
sc-24001

Material Safety Data Sheet

Hazard Alert Code Key:
- EXTREME
- HIGH
- MODERATE
- LOW

- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE INCOMPATIBILITY

- Avoid reaction with oxidising agents

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

+ X + X X +

X: Must not be stored together
O: May be stored together with specific preventions
+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Peak ppm</th>
<th>Peak mg/m³</th>
<th>TWA F/CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes</td>
<td>Australia Exposure Standards</td>
<td>methanol (Methyl alcohol)</td>
<td>200</td>
<td>262</td>
<td>250</td>
<td>328</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Sk | The following materials had no OELs on our records
• daidzein: CAS:486-66-8

EMERGENCY EXPOSURE LIMITS

<table>
<thead>
<tr>
<th>Material</th>
<th>Revised IDLH Value (mg/m3)</th>
<th>Revised IDLH Value (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>methanol</td>
<td>6,000</td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL DATA

DAIDZEIN:
- For methanol:
 Odour Threshold Value: 4.2-5960 ppm (detection), 53.0-8940 ppm (recognition)
 NOTE: Detector tubes for methanol, measuring in excess of 50 ppm, are commercially available.
 Exposure at or below the recommended TLV-TWA is thought to substantially reduce the significant risk of headache, blurred vision and other ocular and systemic effects.
 Odour Safety Factor (OSF): OSF=2 (METHANOL).
 METHANOL:
 - For methanol:
 Odour Threshold Value: 4.2-5960 ppm (detection), 53.0-8940 ppm (recognition)
Daidzein

sc-24001

Material Safety Data Sheet

Hazard Alert Code Key:

EXTREME HIGH MODERATE LOW

NOTE: Detector tubes for methanol, measuring in excess of 50 ppm, are commercially available. Exposure at or below the recommended TLV-TWA is thought to substantially reduce the significant risk of headache, blurred vision and other ocular and systemic effects.

Odour Safety Factor (OSF)
OSF=2 (METHANOL).

PERSONAL PROTECTION

EYE

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Factors such as:
 - frequency and duration of contact,
 - chemical resistance of glove material,
 - glove thickness and
 - dexterity,
are important in the selection of gloves.
Experience indicates that the following polymers are suitable as glove materials for protection against undisolved, dry solids, where abrasive particles are not present.
- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride
Gloves should be examined for wear and/ or degradation constantly.

OTHER

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory . These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
Material Safety Data Sheet

Daidzein

sc-24001

Hazard Alert Code Key:

- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

<table>
<thead>
<tr>
<th>Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x ES</td>
<td>AX P1 Air-line*</td>
<td>-</td>
<td>AX PAPR-P1</td>
</tr>
<tr>
<td>50 x ES</td>
<td>Air-line**</td>
<td>AX P2</td>
<td>AX PAPR-P2</td>
</tr>
<tr>
<td>100 x ES</td>
<td>-</td>
<td>AX P3</td>
<td>-</td>
</tr>
<tr>
<td>100+ x ES</td>
<td>-</td>
<td>Air-line*</td>
<td>AX PAPR-P3</td>
</tr>
</tbody>
</table>

* - Negative pressure demand ** - Continuous flow.
The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required. For further information consult site specific CHEMWATCH data (if available), or your Occupational Health and Safety Advisor.

ENGINEERING CONTROLS

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:
 (a): particle dust respirators, if necessary, combined with an absorption cartridge;
 (b): filter respirators with absorption cartridge or canister of the right type;
 (c): fresh-air hoods or masks
- Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

<table>
<thead>
<tr>
<th>Type of Contaminant</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>1-2.5 m/s (200-500 f/min.)</td>
</tr>
<tr>
<td>grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).</td>
<td>2.5-10 m/s (500-2000 f/min.)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

<table>
<thead>
<tr>
<th>Lower end of the range</th>
<th>Upper end of the range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Room air currents minimal or favourable to capture</td>
<td>1: Disturbing room air currents</td>
</tr>
<tr>
<td>2: Contaminants of low toxicity or of nuisance value only</td>
<td>2: Contaminants of high toxicity</td>
</tr>
<tr>
<td>3: Intermittent, low production.</td>
<td>3: High production, heavy use</td>
</tr>
<tr>
<td>4: Large hood or large air mass in motion</td>
<td>4: Small hood-local control only</td>
</tr>
</tbody>
</table>

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metres distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

APPEARANCE
Pake yellow crystalline solid; does not mix well with water. Soluble in many organic solvents, dilute alkalies, alcohol, ether.

PHYSICAL PROPERTIES
Solid.
Does not mix with water.
Daidzein

sc-24001

Material Safety Data Sheet

Hazard Alert Code Key:

<table>
<thead>
<tr>
<th>State</th>
<th>Divided solid</th>
<th>Molecular Weight</th>
<th>254.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Range (°C)</td>
<td>Not available</td>
<td>Viscosity</td>
<td>Not Available</td>
</tr>
<tr>
<td>Boiling Range (°C)</td>
<td>Not available</td>
<td>Solubility in water (g/L)</td>
<td>Partly miscible</td>
</tr>
<tr>
<td>Flash Point (°C)</td>
<td>Not available</td>
<td>pH (1% solution)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Decomposition Temp (°C)</td>
<td>315-323</td>
<td>pH (as supplied)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Autoignition Temp (°C)</td>
<td>Not available</td>
<td>Vapour Pressure (kPa)</td>
<td>Negligible</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available</td>
<td>Specific Gravity (water=1)</td>
<td>Not available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
<td>Relative Vapour Density (air=1)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Negligible</td>
<td>Evaporation Rate</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Material Value

log Kow -0.82 -0.66

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (eg. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.

EYE

This material can cause eye irritation and damage in some persons.

SKIN

This material can cause inflammation of the skin on contact in some persons. The material may accentuate any pre-existing dermatitis condition.

Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions.

Open cuts, abraded or irritated skin should not be exposed to this material.

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

This material can cause respiratory irritation in some persons. The body’s response to such irritation can cause further lung damage.

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo.

Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.

Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be
Daidzein

Material Safety Data Sheet

sc-24001

Hazard Alert Code Key:

<table>
<thead>
<tr>
<th></th>
<th>EXTREME</th>
<th>HIGH</th>
<th>MODERATE</th>
<th>LOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHRONIC HEALTH EFFECTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strong evidence exists that this substance may cause irreversible mutations (though not lethal) even following a single exposure.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory (in vitro) and animal studies show, exposure to the material may result in a possible risk of irreversible effects, with the possibility of producing mutation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Based on experience with similar materials, there is a possibility that exposure to the material may reduce fertility in humans at levels which do not cause other toxic effects.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Based on experience with animal studies, there is a possibility that exposure to the material may result in toxic effects to the development of the foetus, at levels which do not cause significant toxic effects to the mother.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human and animal exposures to the phytoestrogens (for example, the isoflavones, some flavonoids, saponin, coumestans and lignans) can be high because these compounds are found in many foods. Although small amounts in the diet apparently protects against cancer, heart disease and osteoporosis, high levels over extended periods may produce toxic effects.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal testing revealed that large amounts of phytoestrogens can cause various forms of hormonal imbalances and affect reproductive development. Phytoestrogens in soy can cause a drop in thyroid hormone, and thus cause hypothyroidism, which is characterized by a tendency to gain weight, slowed metabolism, sleepiness, dryness and loss of hair, low body temperature, hoarseness, muscle weakness, and impaired mentation. If the mother is affected, the unborn baby is also at risk of impaired physical and mental development.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-term exposure to methanol vapour, at concentrations exceeding 3000 ppm, may produce cumulative effects characterised by gastrointestinal disturbances (nausea, vomiting), headache, ringing in the ears, insomnia, trembling, unsteady gait, vertigo, conjunctivitis and clouded or double vision. Liver and/or kidney injury may also result. Some individuals show severe eye damage following prolonged exposure to 800 ppm of the vapour.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOXICITY AND IRRITATION

- Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Intraperitoneal (mouse) LD50:

- Methanol: >2000 mg/kg
- Daidzein: Nil reported

Skin

<table>
<thead>
<tr>
<th>Substance</th>
<th>Australia Exposure Standards - Skin</th>
<th>Notes</th>
<th>Sk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daidzein</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

METHANOL:

- **DO NOT** discharge into sewer or waterways.

DAIDZEIN:

METHANOL:

- For methanol:
 - log Kow: -0.82 - 0.66
 - Half-life (hr) air: 427
 - Half-life (hr) H2O surface water: 5.3-64
 - Henry's atm m3 /mol: 1.35E-04
 - BOD 5: 0.76-1.12
 - COD: 1.05-1.50, 99%
 - ThOD: 1.5
Daidzein
sc-24001

Hazard Alert Code Key:

<table>
<thead>
<tr>
<th></th>
<th>EXTREME</th>
<th>HIGH</th>
<th>MODERATE</th>
<th>LOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCF</td>
<td>0.2-10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Environmental Fate

TERRESTRIAL FATE: An estimated Koc value of 1 indicates that methanol is expected to have very high mobility in soil. Volatilisation of methanol from moist soil surfaces is expected to be an important fate process given a Henry's Law constant of 4.55x10^-6 atm-cu m/mole. The potential for volatilisation of methanol from dry soil surfaces may exist based upon a vapor pressure of 127 mm Hg. Biodegradation is expected to be an important fate process for methanol based on half-lives of 1 and 3.2 days measured in a sandy silt loam and sandy loam from Texas and Mississippi, respectively.

AQUATIC FATE: The estimated Koc indicates that methanol is not expected to adsorb to suspended solids and sediment. Volatilization from water surfaces is expected based upon a Henry's Law constant Using this Henry's Law constant estimated volatilisation half-lives for a model river and model lake are 3 and 35 days, respectively. A BCF of less than 10 measured in fish, suggests bioconcentration in aquatic organisms is low. Hydrolysis and photolysis in sunlit surface waters is not expected to be an important environmental fate process for methanol since this compound lacks functional groups that hydrolyse or absorb light under environmentally relevant conditions. Methanol has been shown to undergo rapid biodegradation in a variety of screening studies using sewage seed and activated sludge inoculum, which suggests that biodegradation will occur in aquatic environments.

ATMOSPHERIC FATE: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere and vapour pressure, methanol is expected to exist solely as a vapor in the ambient atmosphere. Vapour-phase methanol is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals(SRC); the half-life for this reaction in air is estimated to be 17 days, calculated from its rate constant of 9.4x10^-13 cu cm/molecule-sec at 25 deg C.

Ecotoxicity:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
<th>Bioaccumulation</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>daidzein</td>
<td>HIGH</td>
<td>LOW</td>
<td>MED</td>
<td></td>
</tr>
<tr>
<td>methanol</td>
<td>LOW</td>
<td>LOW</td>
<td>HIGH</td>
<td></td>
</tr>
</tbody>
</table>

Section 13 - DISPOSAL CONSIDERATIONS

Containers may still present a chemical hazard/danger when empty.
Return to supplier for reuse/recycling if possible.

Otherwise:
If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
Where possible retain label warnings and MSDS and observe all notices pertaining to the product.
Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.
A Hierarchy of Controls seems to be common - the user should investigate:
 - Reduction,
 - Reuse
 - Recycling
 - Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning or process equipment to enter drains.
It may be necessary to collect all wash water for treatment before disposal.
In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
Where in doubt contact the responsible authority.
Recycle wherever possible.
Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
Daidzein

sc-24001

Material Safety Data Sheet

Hazard Alert Code Key:

- **EXTREME**
- **HIGH**
- **MODERATE**
- **LOW**

- Dispose of by: Burial in a licenced land-fill or Incineration in a licenced apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

HAZCHEM:
None (ADG6)

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: UN, IATA, IMDG

Section 15 - REGULATORY INFORMATION

POISONS SCHEDULE
None

REGULATIONS

Regulations for ingredients

methanol (CAS: 67-56-1) is found on the following regulatory lists:

"Australia - New South Wales Hazardous Substances Prohibited for Specific Uses","Australia Exposure Standards","Australia Hazardous Substances","Australia High Volume Industrial Chemical List (HVICL)","Australia Inventory of Chemical Substances (AICS)","Australia National Pollutant Inventory","Australia Standard for the Uniform Scheduling of Drugs and Poisons (SUSDP) - Appendix E (Part 2)","Australia Standard for the Uniform Scheduling of Drugs and Poisons (SUSDP) - Appendix F (Part 3)","Australia Standard for the Uniform Scheduling of Drugs and Poisons (SUSDP) - Schedule 5","Australia Standard for the Uniform Scheduling of Drugs and Poisons (SUSDP) - Schedule 6","GESAMP/EHS Composite List of Hazard Profiles - Hazard evaluation of substances transported by ships","IMO IBC Code Chapter 17: Summary of minimum requirements","IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances","International Council of Chemical Associations (ICCA) - High Production Volume List","OECD Representative List of High Production Volume (HPV) Chemicals"

No data for daidzein (CAS: , 486-66-8)

Section 16 - OTHER INFORMATION

REPRODUCTIVE HEALTH GUIDELINES

- Established occupational exposure limits frequently do not take into consideration reproductive end points that are clearly below the thresholds for other toxic effects. Occupational reproductive guidelines (ORGs) have been suggested as an additional standard. These have been established after a literature search for the reproductive no-observed-adverse effect-level (NOAEL) and the lowest-observed-adverse-effect-level (LOAEL). In addition the US EPA's procedures for risk assessment for hazard identification and dose-response assessment as applied by NIOSH were used in the creation of such limits. Uncertainty factors (UFs) have also been incorporated.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>ORG</th>
<th>UF</th>
<th>Endpoint</th>
<th>CR</th>
<th>Adeq TLV</th>
</tr>
</thead>
<tbody>
<tr>
<td>methanol</td>
<td>262 mg/m³</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- These exposure guidelines have been derived from a screening level of risk assessment and should not be construed as unequivocally safe limits. ORGs represent an 8-hour time-weighted average unless specified otherwise.
 - CR = Cancer Risk/10000; UF = Uncertainty factor;
 - TLV believed to be adequate to protect reproductive health:
 - LOD: Limit of detection

Toxic endpoints have also been identified as:

D = Developmental; R = Reproductive; TC = Transplacental carcinogen

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net/references.

- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.