PSAPL1 (S-16): sc-248314

The Power to Questio

BACKGROUND

The saposin family includes four structurally related activator proteins, saposin A, B, C and D, that are cleaved from the single precursor protein prosaposin. Prosaposin is synthesized as a protein that is post-translationally modified to a shorter form and then further glycosylated to yield a secretory product. This form subsequently undergoes partial proteolysis to produce saposin A, B, C and D. Each saposin family member acts in conjunction with hydrolase enzymes to facilitate the breakdown of glycosphingolipids within the lysosome. PSAPL1 (prosaposin-like 1) is a 521 secreted protein that contains 2 saposin A-type domains and 4 saposin B-type domains. It is suggested that PSAPL1 may activate the lysosomal degradation of sphingolipids. The gene encoding PSAPL1 is located on chromosome 4, which encodes nearly 6% of the human genome and has the largest gene deserts (regions of the genome with no protein encoding genes) of all of the human chromosomes.

REFERENCES

- O'Brien, J.S. and Kishimoto, Y. 1991. Saposin proteins: structure, function, and role in human lysosomal storage disorders. FASEB J. 5: 301-308.
- Vaccaro, A.M., Tatti, M., Ciaffoni, F., Salvioli, R., Barca, A. and Scerch, C. 1997. Effect of saposins A and C on the enzymatic hydrolysis of liposomal glucosylceramide. J. Biol. Chem. 272: 16862-16867.
- Tatti, M., Salvioli, R., Ciaffoni, F., Pucci, P., Andolfo, A., Amoresano, A. and Vaccaro, A.M. 1999. Structural and membrane-binding properties of saposin D. Eur. J. Biochem. 263: 486-494.
- Zhao, Q. and Morales, C.R. 2000. Identification of a novel sequence involved in lysosomal sorting of the sphingolipid activator protein prosaposin. J. Biol. Chem. 275: 24829-24839.
- Koochekpour, S., Zhuang, Y.J., Beroukhim, R., Hsieh, C.L., Hofer, M.D., Zhau, H.E., Hiraiwa, M., Pattan, D.Y., Ware, J.L., Luftig, R.B., Sandhoff, K., Sawyers, C.L., Pienta, K.J., Rubin, M.A., Vessella, R.L., Sellers, W.R. and Sartor, O. 2005. Amplification and overexpression of prosaposin in prostate cancer. Genes Chromosomes Cancer 44: 351-364.
- 6. Ni, X., Canuel, M. and Morales, C.R. 2006. The sorting and trafficking of lysosomal proteins. Histol. Histopathol. 21: 899-913.
- Hosoda, Y., Miyawaki, K., Saito, S., Chen, J., Bing, X., Terashita, T., Kobayashi, N., Araki, N., Shimokawa, T., Hamada, F., Sano, A., Tanabe, H. and Matsuda, S. 2007. Distribution of prosaposin in the rat nervous system. Cell Tissue Res. 330: 197-207.
- 8. Koochekpour, S., Lee, T.J., Wang, R., Sun, Y., Delorme, N., Hiraiwa, M., Grabowski, G.A., Culig, Z. and Minokadeh, A. 2007. Prosaposin is a novel androgen-regulated gene in prostate cancer cell line LNCaP. J. Cell. Biochem. 101: 631-641.
- Zeng, J., Racicott, J. and Morales, C.R. 2009. The inactivation of the sortilin gene leads to a partial disruption of prosaposin trafficking to the lysosomes. Exp. Cell Res. 315: 3112-3124.

CHROMOSOMAL LOCATION

Genetic locus: PSAPL1 (human) mapping to 4p16.1.

SOURCE

PSAPL1 (S-16) is an affinity purified goat polyclonal antibody raised against a peptide mapping within an internal region of PSAPL1 of human origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-248314 P, ($100 \mu g$ peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

APPLICATIONS

PSAPL1 (S-16) is recommended for detection of PSAPL1 of human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for PSAPL1 siRNA (h): sc-106859, PSAPL1 shRNA Plasmid (h): sc-106859-SH and PSAPL1 shRNA (h) Lentiviral Particles: sc-106859-V.

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey anti-goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use donkey anti-goat IgG-FITC: sc-2024 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**