BACKGROUND

Chromosome 14 contains about 700 genes and 106 million base pairs, comprising about 3.5% of human cellular DNA. Chromosome 14 encodes the presinilin 1 (PSEN1) gene, which is one of the three key genes associated with the development of Alzheimer's disease. The SERPINA1 gene is located on chromosome 14 and when defective leads to the genetic disorder $\alpha 1$-antitrypsin deficiency. This disorder is characterized by severe lung complications and liver dysfunction. Notably, the immunoglobulin heavy chain locus is found on chromosome 14 and has been identified as a fusion with the chromosome 19 encoded protein Bcl-3 in the $(14 ; 19)$ translocations found in a variety of B cell malignancies.

REFERENCES

1. Heilig, R., et al. 2003. The DNA sequence and analysis of human chromosome 14. Nature 421: 601-607.
2. Godbolt, A.K., et al. 2004. A presenilin 1 R278I mutation presenting with language impairment. Neurology 63: 1702-1704.
3. Stolk, J., et al. 2006. $\alpha 1$-antitrypsin deficiency: current perspective on research, diagnosis, and management. Int. J. Chron. Obstruct. Pulmon. Dis. 1: 151-160.
4. Vetrivel, K.S., et al. 2006. Pathological and physiological functions of presenilins. Mol. Neurodegener. 1: 4.
5. Albani, D., et al. 2007. Presenilin-1 mutation E318G and familial Alzheimer's disease in the Italian population. Neurobiol. Aging 28: 1682-1688.
6. Cruz, P.E., et al. 2007. The promise of gene therapy for the treatment of $\alpha 1$ antitrypsin deficiency. Pharmacogenomics 8: 1191-1198.
7. Filley, C.M., et al. 2007. The genetics of very early onset Alzheimer disease. Cogn. Behav. Neurol. 20: 149-156.
8. Martín-Subero, J.I., et al. 2007. A comprehensive genetic and histopathologic analysis identifies two subgroups of B-cell malignancies carrying at $(14 ; 19)(q 32 ; q 13)$ or variant Bcl-3 translocation. Leukemia 21: 1532-1544.
9. Micci, F., et al. 2007. Molecular cytogenetic characterization of $\mathrm{t}(14 ; 19)$ (q32;p13), a new recurrent translocation in B cell malignancies. Virchows Arch. 450: 559-565.

CHROMOSOMAL LOCATION

Genetic locus: Zbtb42 (mouse) mapping to 12 F 1 .

SOURCE

EG382639 (G-17) is an affinity purified goat polyclonal antibody raised against a peptide mapping within an internal region of EG382639 of mouse origin.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

PRODUCT

Each vial contains $200 \mu \mathrm{glgG}$ in 1.0 ml of PBS with $<0.1 \%$ sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-249378 P, (100 $\mu \mathrm{g}$ peptide in 0.5 ml PBS containing $<0.1 \%$ sodium azide and $0.2 \% \mathrm{BSA})$.

APPLICATIONS

EG382639 (G-17) is recommended for detection of EG382639 of mouse origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).
Suitable for use as control antibody for EG382639 siRNA (m): sc-143465, EG382639 shRNA Plasmid (m): sc-143465-SH and EG382639 shRNA (m) Lentiviral Particles: sc-143465-V.

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz MarkerTM compatible donkey anti-goat lgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use donkey anti-goat IgG-FITC: sc-2024 (dilution range: 1:100$1: 400$) or donkey anti-goat IgG-TR: sc-2783 (dilution range: 1:100-1:400) with UltraCruz ${ }^{\text {TM }}$ Mounting Medium: sc-24941.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

