BACKGROUND

The SIX proteins (sine oculis) are a family of homeodomain transcription factors that share a conserved DNA binding domain. Two of these family members Six3 and Six6 (also designated Optx2 and Six9) are required for the specification and proliferation of the eye field in vertebrates, and, therefore, are the vertebrate homologues most closely related to the Drosophila sine oculis protein, which has an essential role in controlling compound eye development. Six3 and Six6 expression largely overlap during development of specific tissues, such as retina, hypothalamus, and pituitary. The human Six6 gene maps to chromosome 14q23.1. Haploinsufficiency of Six6 may cause several developmental disorders, including bilateral anophthalmia and pituitary anomalies. The gene encoding the human Six3 protein maps to chromosome 2p21, a region associated with holoprosencephaly type 2 (HPE2). Deletion of Six3 may be associated with HPE2 disorder, a common, severe malformation of the brain that results from incomplete cleavage of the forebrain during early embryogenesis.

CHROMOSOMAL LOCATION

Genetic locus: SIX6 (human) mapping to 14q23.1, SIX3 (human) mapping to 2p21; Six6 (mouse) mapping to 12 C 3 , Six3 (mouse) mapping to 17 E 4 .

SOURCE

Six3/6 ($\mathrm{N}-20$) is an affinity purified goat polyclonal antibody raised against a peptide mapping near the N -terminus of Six6 of human origin.

PRODUCT

Each vial contains $200 \mu \mathrm{ggG}$ in 1.0 ml of PBS with $<0.1 \%$ sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-25068 P, (100 $\mu \mathrm{g}$ peptide in 0.5 ml PBS containing $<0.1 \%$ sodium azide and $0.2 \% \mathrm{BSA})$.

Available as TransCruz reagent for Gel Supershift and ChIP applications, sc-25068 X, $200 \mu \mathrm{~g} / 0.1 \mathrm{ml}$.

APPLICATIONS

Six3/6 (N-20) is recommended for detection of Six3 and Six6 of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation $[1-2 \mu \mathrm{~g}$ per $100-500 \mu \mathrm{~g}$ of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).
Six3/6 ($\mathrm{N}-20$) is also recommended for detection of Six3 and Six6 in additional species, including canine, bovine, porcine and avian.
Six3/6 (N-20) X TransCruz antibody is recommended for Gel Supershift and ChIP applications.

Molecular Weight of Six3/6: 43 kDa .
Positive Controls: NIH/3T3 nuclear extract: sc-2138, Jurkat nuclear extract: sc-2132 or rat brain extract: sc-2392.

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz MarkerTM compatible donkey anti-goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunoprecipitation: use Protein A/G PLUS-Agarose: sc-2003 (0.5 ml agarose/2.0 ml). 3) Immunofluorescence: use donkey anti-goat IgG-FITC: sc-2024 (dilution range: 1:100-1:400) or donkey anti-goat IgG-TR: sc-2783 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941.

DATA

Six3/6 (N-20): sc-25068. Western blot analysis of Six3/6 expression in NIH/3T3 (A) and Jurkat (B) nuclear extracts, and NIH/3T3 whole cell lysate (C) and rat brain tissue extract (D).

STORAGE

Store at $4^{\circ} \mathrm{C}$, **DO NOT FREEZE ${ }^{* *}$. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

Satisfation Guaranteed

Try Six3 (A-1): sc-398797, our highly recommended monoclonal alternative to $\operatorname{Six} 3 / 6(\mathrm{~N}-20)$.

