Propargyl bromide solution, 80% (w/w) Toluene, Stabilized with Magnesium Oxide

sc-250780

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Propargyl bromide solution, 80% (w/w) Toluene, Stabilized with Magnesium Oxide

STATEMENT OF HAZARDOUS NATURE

NFPA

SUPPLIER
Company: Santa Cruz Biotechnology, Inc.
Address: 2145 Delaware Ave. Santa Cruz, CA 95060 United States of America
Telephone: 800.457.3801 or 831.457.3800
Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305
Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE
Intermediate. Soil fumigant.

SYNONYMS
C3-H3-Br, 3-bromo-1-propyne, 3-bromopropyne, gamma-bromoallylene, 1-bromo-2-propyne

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

<table>
<thead>
<tr>
<th>Hazard Type</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

CANADIAN WHMIS SYMBOLS
EMERGENCY OVERVIEW

RISK
Forms very sensitive explosive metallic compounds.
Toxic if swallowed.
Irritating to eyes, respiratory system and skin.
Highly flammable.
Harmful to aquatic organisms.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
- Toxic effects may result from the accidental ingestion of the material; animal experiments indicate that ingestion of less than 40 gram may be fatal or may produce serious damage to the health of the individual.

EYE
- This material can cause eye irritation and damage in some persons.
- If applied to the eyes, this material causes severe eye damage.
- Irritation of the eyes may produce a heavy secretion of tears (lachrymation).

SKIN
- This material can cause inflammation of the skin on contact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
- The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
- Inhalation of vapors or aerosols (mists, fumes), generated by the material during the course of normal handling, may produce serious damage to the health of the individual.
- Inhalation hazard is increased at higher temperatures.

CHRONIC HEALTH EFFECTS
- Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.
- There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects.
- Chronic intoxication with ionic bromides, historically, has resulted from medical use of bromides but not from environmental or occupational exposure; depression, hallucinosis, and schizophreniform psychosis can be seen in the absence of other signs of intoxication. Bromides may also induce sedation, irritability, agitation, delirium, memory loss, confusion, disorientation, forgetfulness (aphasias), dysarthria, weakness, fatigue, vertigo, stupor, coma, decreased appetite, nausea and vomiting, diarrhoea, hallucinations, an acne like rash on the face, legs and trunk, known as bronchoderma (seen in 25-30% of case involving bromide ion), and a profuse discharge from the nostrils (coryza). Ataxia and generalised hyperreflexia have also been observed. Correlation of neurologic symptoms with blood levels of bromide is inexact.
- The use of substances such as brompheniramine, as antihistamines, largely reflect current day usage of bromides; ionic bromides have been largely withdrawn from therapeutic use due to their toxicity. Several cases of foetal abnormalities have been described in mothers who took large doses of bromides during pregnancy.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>propargyl bromide</td>
<td>106-96-7</td>
<td>>98</td>
</tr>
</tbody>
</table>

Section 4 - FIRST AID MEASURES

SWALLOWED
- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
- Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
- For advice, contact a Poisons Information Center or a doctor.
Urgent hospital treatment is likely to be needed.

If conscious, give water to drink.

INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

NOTE: Wear a protective glove when inducing vomiting by mechanical means.

In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.

If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.

If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

EYE

If this product comes in contact with the eyes:

Immediately hold eyelids apart and flush the eye continuously with running water.

Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes.

Transport to hospital or doctor without delay.

Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

If skin contact occurs:

Immediately remove all contaminated clothing, including footwear

Flush skin and hair with running water (and soap if available).

Seek medical attention in event of irritation.

INHALED

If fumes or combustion products are inhaled remove from contaminated area.

Lay patient down. Keep warm and rested.

Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.

Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.

Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN

Treat symptomatically.

for poisons (where specific treatment regime is absent):

BASIC TREATMENT

Establish a patent airway with suction where necessary.

Watch for signs of respiratory insufficiency and assist ventilation as necessary.

Administer oxygen by non-rebreather mask at 10 to 15 l/min.

Monitor and treat, where necessary, for pulmonary edema.

Monitor and treat, where necessary, for shock.

Anticipate seizures.

DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.

Positive-pressure ventilation using a bag-valve mask might be of use.

Monitor and treat, where necessary, for arrhythmias.

Start an IV D5W TKO. If signs of hypovolemia are present use lactated Ringers solution. Fluid overload might create complications.

Drug therapy should be considered for pulmonary edema.

Hypotension with signs of hypovolemia requires the cautious administration of fluids. Fluid overload might create complications.

Treat seizures with diazepam.

Proparacaine hydrochloride should be used to assist eye irrigation.

BRONSTEIN, A.C. and CURRANCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994.

Section 5 - FIRE FIGHTING MEASURES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapour Pressure (mmHG)</td>
<td>Not available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>1.520</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
</tr>
</tbody>
</table>

EXTINGUISHING MEDIA
FIRE FIGHTING

- Alert Emergency Responders and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- Fight fire from a safe distance, with adequate cover.
- If safe, switch off electrical equipment until vapor fire hazard removed.
- Use water delivered as a fine spray to control the fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protective location.
- If safe to do so, remove containers from path of fire.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Liquid and vapor are highly flammable.
- Severe fire hazard when exposed to heat, flame and/or oxidizers.
- Vapor may travel a considerable distance to source of ignition.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).

Combustion products include: carbon dioxide (CO2), hydrogen bromide, other pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY

- Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:
- Chemical goggles.

Gloves:

Respirator:
- Type AB-P Filter of sufficient capacity

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid breathing vapors and contact with skin and eyes.
- Control personal contact by using protective equipment.
- Contain and absorb small quantities with vermiculite or other absorbent material.
- Wipe up.
- Collect residues in a flammable waste container.

MAJOR SPILLS

- Chemical Class: aliphatics, halogenated

For release onto land: recommended sorbents listed in order of priority.

<table>
<thead>
<tr>
<th>SORBENT TYPE</th>
<th>RANK</th>
<th>APPLICATION</th>
<th>COLLECTION</th>
<th>LIMITATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND SPILL - SMALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cross-linked polymer - particulate</td>
<td>1</td>
<td>shovel</td>
<td>shovel</td>
<td>R, W, SS</td>
</tr>
<tr>
<td>cross-linked polymer - pillow</td>
<td>1</td>
<td>throw</td>
<td>pitchfork</td>
<td>R, P, DGC, RT</td>
</tr>
<tr>
<td>wood fiber - pillow</td>
<td>2</td>
<td>throw</td>
<td>pitchfork</td>
<td>R, P, DGC, RT</td>
</tr>
<tr>
<td>treated wood fibre - particulate</td>
<td>2</td>
<td>shovel</td>
<td>shovel</td>
<td>R, W, DGC</td>
</tr>
<tr>
<td>sorbent clay - particulate</td>
<td>3</td>
<td>shovel</td>
<td>shovel</td>
<td>R, I, P</td>
</tr>
<tr>
<td>foamed glass - pillow</td>
<td>3</td>
<td>throw</td>
<td>pitchfork</td>
<td>R, P, DGC, RT</td>
</tr>
</tbody>
</table>

LAND SPILL - MEDIUM

<table>
<thead>
<tr>
<th>SORBENT TYPE</th>
<th>RANK</th>
<th>APPLICATION</th>
<th>COLLECTION</th>
<th>LIMITATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>cross-linked polymer - particulate</td>
<td>1</td>
<td>blower</td>
<td>skiploader</td>
<td>R, W, SS</td>
</tr>
<tr>
<td>cross-linked polymer - pillow</td>
<td>2</td>
<td>throw</td>
<td>skiploader</td>
<td>R, DGC, RT</td>
</tr>
<tr>
<td>sorbent clay - particulate</td>
<td>3</td>
<td>blower</td>
<td>skiploader</td>
<td>R, I, P</td>
</tr>
<tr>
<td>polypropylene - particulate</td>
<td>3</td>
<td>blower</td>
<td>skiploader</td>
<td>W, SS, DGC</td>
</tr>
</tbody>
</table>
foamed glass - pillow
expanded mineral - particulate

Legend
DGC: Not effective where ground cover is dense
R: Not reusable
I: Not incinerable
P: Effectiveness reduced when rainy
RT: Not effective where terrain is rugged
SS: Not for use within environmentally sensitive sites
W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control;

Clear area of personnel and move upwind.
Alert Emergency Responders and tell them location and nature of hazard.
May be violently or explosively reactive.
Wear breathing apparatus plus protective gloves.
Prevent, by any means available, spillage from entering drains or water course.
Consider evacuation (or protect in place).
No smoking, naked lights or ignition sources.
Increase ventilation.
Stop leak if safe to do so.
Water spray or fog may be used to disperse / absorb vapor.
Contain spill with sand, earth or vermiculite.
Use only spark-free shovels and explosion proof equipment.
Collect recoverable product into labeled containers for recycling.
Absorb remaining product with sand, earth or vermiculite.
Collect solid residues and seal in labeled drums for disposal.
Wash area and prevent runoff into drains.
If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

PROTECTIVE ACTION ZONE

From IERG (Canada/Australia)
Isolation Distance 50 meters
Downwind Protection Distance 300 meters

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerri can or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a “one-tonne” compressed gas cylinder.

6 IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.
Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Containers, even those that have been emptied, may contain explosive vapors.
- Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- DO NOT allow clothing wet with material to stay in contact with skin.
- Avoid all personal contact, including inhalation.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights, heat or ignition sources.
- When handling, DO NOT eat, drink or smoke.
- Vapor may ignite on pumping or pouring due to static electricity.
- DO NOT use plastic buckets.
- Earth and secure metal containers when dispensing or pouring product.
- Use spark-free tools when handling.
- Avoid contact with incompatible materials.
- Keep containers securely sealed.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

RECOMMENDED STORAGE METHODS

- Glass container.
 - Packing as supplied by manufacturer. Plastic containers may only be used if approved for flammable liquid. Check that containers are clearly labeled and free from leaks.
 - For low viscosity materials (i): Drums and jerricans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
 - For materials with a viscosity of at least 2680 cSt. (23 deg. C)
 - For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
 - Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (23 deg. C) - (i): Removable head packaging; (ii): Cans with friction closures and (iii): low pressure tubes and cartridges may be used.
 - Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages.
 - In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting molded plastic box and the substances are not incompatible with the plastic.

STORAGE REQUIREMENTS

- Store in original containers in approved flame-proof area.
- No smoking, naked lights, heat or ignition sources.
- DO NOT store in pits, depressions, basements or areas where vapors may be trapped.
- Keep containers securely sealed.
- Store away from incompatible materials in a cool, dry well ventilated area.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

<table>
<thead>
<tr>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>+</th>
</tr>
</thead>
</table>

X: Must not be stored together
O: May be stored together with specific preventions
+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Peak ppm</th>
<th>Peak mg/m³</th>
<th>TWA F/CC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>US AIHA Workplace Environmental Exposure Levels (WEELs)</td>
<td>propargyl bromide (Propargyl Bromide)</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>skin</td>
</tr>
</tbody>
</table>

MATERIAL DATA

PROPRARGYL BROMIDE:

- Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers’ responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:
- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET

- Wear chemical protective gloves, eg. PVC.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER

- Overalls.
- PVC Apron.
- PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Ensure there is ready access to a safety shower.
Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.

For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets), non sparking safety footwear.

RESPIRATOR

- Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

<table>
<thead>
<tr>
<th>Breathing Zone Level ppm (volume)</th>
<th>Maximum Protection Factor</th>
<th>Half-face Respirator</th>
<th>Full-Face Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>10</td>
<td>AB-1 P</td>
<td>-</td>
</tr>
<tr>
<td>1000</td>
<td>50</td>
<td>-</td>
<td>AB-1 P</td>
</tr>
<tr>
<td>5000</td>
<td>50</td>
<td>Airline*</td>
<td>-</td>
</tr>
<tr>
<td>5000</td>
<td>100</td>
<td>-</td>
<td>AB-2 P</td>
</tr>
<tr>
<td>10000</td>
<td>100</td>
<td>-</td>
<td>AB-3 P</td>
</tr>
<tr>
<td>100+</td>
<td>100+</td>
<td>Airline* *</td>
<td></td>
</tr>
</tbody>
</table>

* - Continuous Flow ** - Continuous-flow or positive pressure demand.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required. Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

- For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

<table>
<thead>
<tr>
<th>Type of Contaminant:</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent, vapors, degreasing etc., evaporating from tank (in still air).</td>
<td>0.25-0.5 m/s (50-100 ft/min.)</td>
</tr>
<tr>
<td>aerosols, fumes from pouring operations, intermittent container filling, low speed conveyor transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)</td>
<td>0.5-1 m/s (100-200 ft/min.)</td>
</tr>
<tr>
<td>direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>1-2.5 m/s (200-500 ft/min.)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

- Lower end of the range
- Upper end of the range

1: Room air currents minimal or favorable to capture
2: Contaminants of low toxicity or of nuisance value only.
3: Intermittent, low production.
4: Large hood or large air mass in motion

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 ft/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Liquid.

Toxic or noxious vapors/ gas.

<table>
<thead>
<tr>
<th>State</th>
<th>Liquid</th>
<th>Molecular Weight</th>
<th>118.97</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Range (°F)</td>
<td>Not available</td>
<td>Viscosity</td>
<td>Not Available</td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>190.4- 194</td>
<td>Solubility in water (g/L)</td>
<td>Reacts</td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>64.94</td>
<td>pH (1% solution)</td>
<td>Not available</td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>Not available</td>
<td>pH (as supplied)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>Not available</td>
<td>Vapour Pressure (mmHG)</td>
<td>Not available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available</td>
<td>Specific Gravity (water=1)</td>
<td>1.520</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
<td>Relative Vapor Density (air=1)</td>
<td>>1</td>
</tr>
</tbody>
</table>
APPEARANCE
Pale yellow liquid; reacts with water. Miscible with benzene, carbon tetrachloride, ethanol, ethylene glycol ether, ethyl acetate. Reacts with hydroxy compounds to form ethers; with sulfides, ammonia, amines or metal hypoiodates to give corresponding propargyl compounds; with aldehydes and ketones to give beta-acetylenic alcohols. Isomerises readily.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY
- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY
- Haloacetylenes should be used with exceptional precautions.
- Explosions may occur during distillation when bath temperatures are too high or if air is admitted to a hot vacuum-distillation as evidenced by experience with bromoacetylenes.

BREHERICK L.: Handbook of Reactive Chemical Hazards.

Segregate from alcohol, water.

NOTE: May develop pressure in containers; open carefully. Vent periodically.

Propargyl chloride/propargyl bromide: may deflagrate at elevated temperatures (around 200°C) with the formation of the hydrogen halide gas should be treated as shock-, impact-, and heat-sensitive material and stored as explosives unless stabilised or diluted with toluene (which lowers the flash-point slightly)

react, possibly violently or explosively on contact with oxidisers, ammonia

may form sensitive and highly unstable metal acetylides wit cobalt, silver, copper, magnesium, mercury, and their compounds (e.g silver nitrate) and aldehydes

may generate electrostatic charges

attacks most metals

Haloalkenes are highly reactive. Some of the more lightly substituted lower members are highly flammable; many members of the group are peroxidizable and polymerizable. **BREHERICK L.: Handbook of Reactive Chemical Hazards.**

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

PROPARGYL BROMIDE

TOXICITY AND IRRITATION
- unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

<table>
<thead>
<tr>
<th></th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (guinea pig) LD50</td>
<td>0.029 mg/kg</td>
<td>Nil Reported</td>
</tr>
</tbody>
</table>
| Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

CARCINOGEN

<table>
<thead>
<tr>
<th>BROMINE COMPOUNDS (ORGANIC OR INORGANIC)</th>
<th>US Environmental Defense Scorecard</th>
<th>Suspected Carcinogens</th>
<th>Reference(s)</th>
<th>P65-MC</th>
</tr>
</thead>
</table>

SKIN

| propargyl bromide | ND | Notes | skin |

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

PROPARGYL BROMIDE:

- Harmful to aquatic organisms.
- Substances containing unsaturated carbons are ubiquitous in indoor environments. They result from many sources (see below). Most are
reactive with environmental ozone and many produce stable products which are thought to adversely affect human health. The potential for surfaces in an enclosed space to facilitate reactions should be considered.

<table>
<thead>
<tr>
<th>Source of unsaturated substances</th>
<th>Unsaturated substances (Reactive Emissions)</th>
<th>Major Stable Products produced following reaction with ozone.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupants (exhaled breath, ski oils, personal care products)</td>
<td>Isoprene, nitric oxide, squalene, unsaturated sterols, oleic acid and other unsaturated fatty acids, unsaturated oxidation products</td>
<td>Methacrolein, methyl vinyl ketone, nitrogen dioxide, acetone, 6MHO, 40PA, formaldehyde, nonanal, decanal, 9-oxo-nonanoic acid, azelaic acid, nonanoic acid.</td>
</tr>
<tr>
<td>Soft woods, wood flooring, including cypress, cedar and silver fr boards, houseplants</td>
<td>Isoprene, limonene, alpha-pinene, other terpenes and sesquiterpenes</td>
<td>Formaldehyde, 4-AMC, pinoaldehyde, pinic acid, pinonic acid, formic acid, methacrolein, methyl vinyl ketone, SOAs including ultrafine particles</td>
</tr>
<tr>
<td>Carpets and carpet backing</td>
<td>4-Phenylcyclohexene, 4-vinylcyclohexene, styrene, 2-ethylhexyl acrylate, unsaturated fatty acids and esters</td>
<td>Formaldehyde, acetaldehyde, benzaldehyde, hexanal, nonanal, 2-nonenal</td>
</tr>
<tr>
<td>Linoleum and paints/polishes containing linseed oil</td>
<td>Linoleic acid, linolenic acid</td>
<td>Propanal, hexanal, nonanal, 2-heptenal, 2-nonenal, 2-decenal, 1-pentene-3-one, propionic acid, n-butyric acid</td>
</tr>
<tr>
<td>Latex paint</td>
<td>Residual monomers</td>
<td>Formaldehyde</td>
</tr>
<tr>
<td>Certain cleaning products, polishes, waxes, air fresheners</td>
<td>Limonene, alpha-pinene, terpinolene, alpha-terpineol, linalool, linalyl acetate and other terpenoids, longifolene and other sesquiterpenes</td>
<td>Formaldehyde, acetaldehyde, glycoaldehyde, formic acid, acetic acid, hydrogen and organic peroxides, acetone, benzaldehyde, 4-hydroxy-4-methyl-5-hexen-1-ol, 5-ethenyl-dihydro-5-methyl-2(3H)-furanone, 4-AMC, SOAs including ultrafine particles</td>
</tr>
<tr>
<td>Natural rubber adhesive</td>
<td>Isoprene, terpenes</td>
<td>Formaldehyde, methacrolein, methyl vinyl ketone</td>
</tr>
<tr>
<td>Photocopier toner, printed paper, styrene polymers</td>
<td>Styrene</td>
<td>Formaldehyde, benzaldehyde</td>
</tr>
<tr>
<td>Environmental tobacco smoke</td>
<td>Styrene, acrolein, nicotine</td>
<td>Formaldehyde, benzaldehyde, hexanal, glyoxal, N-methylformamide, nicotinaldehyde, cotinine</td>
</tr>
<tr>
<td>Soiled clothing, fabrics, bedding</td>
<td>Squalene, unsaturated sterols, oleic acid and other saturated fatty acids</td>
<td>Acetone, geranyl acetone, 6MHO, 40PA, formaldehyde, nonanal, decanal, 9-oxo-nonanoic acid, azelaic acid, nonanoic acid</td>
</tr>
<tr>
<td>Soiled particle filters</td>
<td>Unsaturated fatty acids from plant waxes, leaf litter, and other vegetative debris; soot; diesel particles</td>
<td>Formaldehyde, nonanal, and other aldehydes; azelaic acid; nonanoic acid; 9-oxo-nonanoic acid and other o xo-acids; compounds with mixed functional groups (=O, -OH, and -COOH)</td>
</tr>
<tr>
<td>Ventilation ducts and duct liners</td>
<td>Unsaturated fatty acids and esters, unsaturated oils, neoprene</td>
<td>C5 to C10 aldehydes</td>
</tr>
<tr>
<td>"Urban grime"</td>
<td>Polycyclic aromatic hydrocarbons</td>
<td>Oxidized polycyclic aromatic hydrocarbons</td>
</tr>
<tr>
<td>Perfumes, colognes, essential oils (e.g. lavender, eucalyptus, tea tree)</td>
<td>Limonene, alpha-pinene, linalool, linalyl acetate, terpinene-4-ol, gamma-terpinene</td>
<td>Formaldehyde, 4-AMC, acetone, 4-hydroxy-4-methyl-5-hexen-1-al, 5-ethenyl-dihydro-5-methyl-2(3H)-furanone, SOAs including ultrafine particles</td>
</tr>
<tr>
<td>Overall home emissions</td>
<td>Limonene, alpha-pinene, styrene</td>
<td>Formaldehyde, 4-AMC, pinoaldehyde, acetone, pinic acid, pinonic acid, formic acid, benzaldehyde, SOAs including ultrafine particles</td>
</tr>
</tbody>
</table>

Abbreviations: 4-AMC, 4-acetyl-1-methylcyclohexene; 6MHO, 6-methyl-5-heptene-2-one, 40PA, 4-oxopentalan, SOA, Secondary Organic Aerosols

Reference: Charles J Weschler; Environmental Health Perspectives, Vol 114, October 2006.

Bromide ion may be introduced to the environment after the dissociation of various salts and complexes or the degradation of organobromide compounds. Although not a significant toxin in mammalian or avian systems it is highly toxic to rainbow trout and Daphnia magna. Bromides may also affect the growth of micro-organisms and have been used for this purpose in industry. Bromides in drinking water are occasionally subject to disinfection processes involving ozone of chlorine. Bromide may be oxidised to produce hypobromous acid which in turn may react with natural organic matter to form brominated compounds. The formation of bromoform has been well documented, as has the formation of bromoacetic acids, bromopicrin, cyanogen bromide, and bromoacetone. Bromates may also be formed following ozonation or chlorination if pH is relatively high. Bromates may be animal carcinogens.

For haloalkanes and haloalkenes:

Environmental fate:

Certain haloalkane gases in the atmosphere can also contribute to the greenhouse effect by restricting heat loss from the Earth’s atmosphere through absorbing infrared emissions from the surface. Generally haloalkanes contributing to the greenhouse effect consist of a fully or partly fluorinated carbon backbone.

Gas-phase reactions with OH radicals are the major tropospheric loss process for the haloalkanes. In addition photooxidation reactions with O3 and NO3 radicals can result in transformation.

Organic substances containing chlorine, if primarily present in the atmospheric compartment and if their lifetime is long enough can reach the stratosphere and decompose through photolysis and other chemical reaction (e.g. with OH radical). Chlorine atoms can then participate...
in the catalytic ozone destruction cycles. The atmospheric lifetime is too short to enable a significant fraction of the compound emitted to reach the stratosphere.

Haloalkanes do not hydrolyse easily. Acids do not catalyse the hydrolysis and base catalysis is only important at higher pHs than are observed in the environment.

The apparent hazard of halo-alkanes and alkenes to human health has prompted investigations concerning their fate in subsurface waters and in soil. Although abiotic transformations may be significant within the time scales commonly associated with groundwater movement, biotic process typically proceed much faster, provided that there are sufficient substrates, nutrients and microbial populations to mediate such transformations. Several bacterial strains including methane-utilising bacteria capable of utilising haloalkanes have been isolated. Microbial dehalogenation by these strains is mediated by enzymes (oxygenase and hydrolase). The biodegradation of haloalkanes can proceed through different pathways. Haloparaffins (C12 to C18) have been reported to be incorporated into fatty acids in bacteria, yeasts, and fungi, resulting in their accumulation in the food chain. Another pathway is the oxygenation at the nonhalogenated end of monohalogenated alkanes by an inherent oxygenase with a tight substrate selectivity. In this case fluoroalkanes were defluorinated, but no dehalogenation was observed with chloro-, bromo-, or iodoalkanes. Chain length was reported to have minor effects on this oxygenation reaction. In general, alpha- and alpha,omega-chlorinated haloalkanes with short carbon chains (C1 to C6) are dehalogenated hydrolytically or by a glutathione-dependent mechanism. In contrast, alpha- and alpha,omega-haloalkanes with longer chains, e.g., 1,9-dichlorononane and 1,10-dichlorodecane (1,10-DCD), have been proposed to be dehalogenated by oxidative mechanisms. Studies on the biodegradation of this class of compounds are rare, because haloalkane-degrading microorganisms are not easily found.

In water and terrestrial compartments haloalkanes may hydrolyse in the presence of naturally occurring sulfur-containing nucleophiles. Bisulfide ion (HS-) is generally the most important nucleophile because it is moderately reactive and is usually present at the highest concentration. When elemental sulfur is present, polysulfides (S4 2- and S5 2-) will be more important than HS- at pH 7 (approximately) because they are 60 times more reactive and their equilibrium concentrations increase with increasing pH. The end products of such reactions include a variety of mercaptans and dialkyl sulfides.

DO NOT discharge into sewer or waterways.

Ecotoxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
<th>Bioaccumulation</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>propargyl bromide</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>HIGH</td>
</tr>
</tbody>
</table>

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions

A. General Product Information
Ignitability characteristic: use EPA hazardous waste number D001 (waste code I)

Disposal Instructions
All waste must be handled in accordance with local, state and federal regulations.
Puncture containers to prevent re-use and bury at an authorized landfill.
Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:
- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

<table>
<thead>
<tr>
<th>DOT:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbols: None</td>
</tr>
<tr>
<td>Identification Numbers: UN2345</td>
</tr>
<tr>
<td>Label Codes: 3</td>
</tr>
<tr>
<td>Packaging: Exceptions: 150</td>
</tr>
</tbody>
</table>
Packaging: Exceptions: 150

Quantity limitations: Passenger aircraft/rail: 5 L

Quantity Limitations: Cargo aircraft only: 60 L

Vessel stowage: Other: 40

Vessel stowage: Location: D

Hazardous materials descriptions and proper shipping names:
3-Bromopropyne

Air Transport IATA:
ICA0/IATA Class: 3
ICAO/IATA Subrisk: None
UN/ID Number: 2345
Packing Group: II
Special provisions: None

Shipping Name: 3-BROMOPROPYNE

Maritime Transport IMDG:
IMDG Class: 3
IMDG Subrisk: None
UN Number: 2345
Packing Group: II
EMS Number: F-E, S-D
Special provisions: 905
Limited Quantities: 1 L
Shipping Name: 3-BROMOPROPYNE

Section 15 - REGULATORY INFORMATION

REGULATIONS
propargyl bromide (CAS: 106-96-7) is found on the following regulatory lists;

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE
■ Potentially explosive peroxides may form on standing.*.
■ Skin contact may produce health damage*.
■ Inhalation may produce serious health damage*.
■ Cumulative effects may result following exposure*.
■ Eye contact may produce serious damage*.
■ May be harmful to the fetus/embryo*.
* (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

■ Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.
A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

■ The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.