Sodium p-toluenesulfonate

sc-251038

Material Safety Data Sheet

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Sodium p-toluenesulfonate

STATEMENT OF HAZARDOUS NATURE

NFPA

SUPPLIER
Santa Cruz Biotechnology, Inc.
2145 Delaware Avenue
Santa Cruz, California 95060
800.457.3801 or 831.457.3800

EMERGENCY
ChemWatch
Within the US & Canada: 877–715–9305
Outside the US & Canada: +800 2436 2255
(1–800-CHEMCALL) or call +613 9573 3112

SYNONYMS
C7-H7-O3-S-Na, CH3C6H4SO3Na, "p-toluenesulfonic acid, sodium salt", "p-toluenesulphonic acid, sodium salt", "sodium p-toluenesulphonate", "sodium toluenesulfonate", "benzenesulfonic acid, 4-methyl-, sodium salt", "sodium 4-methylbenzenesulfonate", "sodium paratoluene sulphonate", "sodium p-tolyl sulfonate", "sodium tosylate", "4-toluenesulfonic acid sodium salt", "Naxonate Hydrotrope"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chronicity</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

CANADIAN WHMIS SYMBOLS

1 of 7
EMERGENCY OVERVIEW
RISK

POTENTIAL HEALTH EFFECTS
ACUTE HEALTH EFFECTS

SWALLOWED
■ Accidental ingestion of the material may be damaging to the health of the individual.
■ Ingestion of anionic surfactants may produce diarrhea, bloated stomach, and occasional vomiting.

EYE
■ There is some evidence to suggest that this material can cause eye irritation and damage in some persons.
■ Direct eye contact with some anionic surfactants in high concentration can cause severe damage to the cornea.
Low concentrations can cause discomfort, excess blood flow, and corneal clouding and swelling.

SKIN
■ Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
■ Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.
■ There is some evidence to suggest that this material can cause inflammation of the skin on contact in some persons.
■ Anionic surfactants can cause skin redness and pain, as well as a rash.
Cracking, scaling and blistering can occur.
■ Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects.
Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
■ The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified using animal models).
Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
■ Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS
■ There is some evidence that inhaling this product is more likely to cause a sensitization reaction in some persons compared to the general population.
There is limited evidence that, skin contact with this product is more likely to cause a sensitization reaction in some persons compared to the general population.
Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung.
Exposure to Sulfonates can cause an imbalance in cellular salts and therefore cellular function. Airborne sulfonates may be responsible for respiratory allergies and, in some instances, minor dermal allergies.
Prolonged or repeated skin contact may cause degreasing with drying, cracking and dermatitis following.
Repeated skin contact with some sulfonated surfactants has produced sensitization dermatitis in predisposed individuals.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>sodium p-toluenesulfonate</td>
<td>657-84-1</td>
<td>>98</td>
</tr>
</tbody>
</table>

Section 4 - FIRST AID MEASURES

SWALLOWED
■ If swallowed do NOT induce vomiting. · If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

EYE
■ If this product comes in contact with the eyes: · Wash out immediately with fresh running water. · Ensure complete irritation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN
■ If skin contact occurs: · Immediately remove all contaminated clothing, including footwear · Flush skin and hair with running water (and soap if available).

INHALED
■ If dust is inhaled, remove from contaminated area. · Encourage patient to blow nose to ensure clear passage of breathing. · If irritation or discomfort persists seek medical attention.
NOTES TO PHYSICIAN
■ Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES

<table>
<thead>
<tr>
<th>Vapour Pressure (mmHG)</th>
<th>Negligible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>Not available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
</tr>
</tbody>
</table>

EXTINGUISHING MEDIA
· Water spray or fog.
· Foam.

FIRE FIGHTING
· Alert Emergency Responders and tell them location and nature of hazard.
· Wear breathing apparatus plus protective gloves.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
· Combustible solid which burns but propagates flame with difficulty.
· Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), sulfur oxides (SOx), other pyrolysis products typical of burning organic material.
May emit poisonous fumes.
May emit corrosive fumes.

FIRE INCOMPATIBILITY
■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION
Glasses:
Chemical goggles.
Gloves:
Respirator:
Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
· Remove all ignition sources.
· Clean up all spills immediately.
· Avoid contact with skin and eyes.
· Control personal contact by using protective equipment.
· Use dry clean up procedures and avoid generating dust.
· Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS
■ Moderate hazard.
· CAUTION: Advise personnel in area.
· Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING
· Avoid all personal contact, including inhalation.
· Wear protective clothing when risk of exposure occurs.
Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.
· Do NOT cut, drill, grind or weld such containers.
· In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS
· Polyethylene or polypropylene container.
· Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS
· Store in original containers.
· Keep containers securely sealed.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION
EXPOSURE CONTROLS

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Peak ppm</th>
<th>Peak mg/m³</th>
<th>TWA F/CC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>US - California Permissible Exposure Limits for Chemical Contaminants</td>
<td>sodium p-toluenesulfonate (Particulates not otherwise regulated Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(n)</td>
<td></td>
</tr>
<tr>
<td>US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants</td>
<td>sodium p-toluenesulfonate (Particulates not otherwise regulated Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants</td>
<td>sodium p-toluenesulfonate (Particulates not otherwise regulated PNOR)(f)- Respirable fraction</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Michigan Exposure Limits for Air Contaminants</td>
<td>sodium p-toluenesulfonate (Particulates not otherwise regulated Respirable dust)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Prince Edward Island Occupational Exposure Limits</td>
<td>sodium p-toluenesulfonate (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See Appendix B current TLV/BEI Book</td>
<td></td>
</tr>
</tbody>
</table>

PERSONAL PROTECTION

RESPIRATOR
Particulate
Consult your EHS staff for recommendations

EYE
- Safety glasses with side shields.
- Chemical goggles.

HANDS/FEET

- **NOTE:** The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
 - frequency and duration of contact,
 - chemical resistance of glove material,
 - glove thickness and
 - dexterity
- Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.
- Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
- Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.
 - polychloroprene
Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid. Mixes with water.

<table>
<thead>
<tr>
<th>State</th>
<th>Melting Range (°F)</th>
<th>Boiling Range (°F)</th>
<th>Flash Point (°F)</th>
<th>Decomposition Temp (°F)</th>
<th>Autoignition Temp (°F)</th>
<th>Upper Explosive Limit (%)</th>
<th>Lower Explosive Limit (%)</th>
<th>Volatile Component (%vol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Divided solid</td>
<td>Not available</td>
<td>Not available</td>
<td>Not available</td>
<td>Not available.</td>
<td>Not available.</td>
<td>Not available</td>
<td>Not available</td>
<td>Negligible</td>
</tr>
<tr>
<td>Molecular Weight</td>
<td>Viscosity</td>
<td>Solubility in water (g/L)</td>
<td>pH (1% solution)</td>
<td>pH (as supplied)</td>
<td>Vapour Pressure (mmHG)</td>
<td>Specific Gravity (water=1)</td>
<td>Relative Vapor Density (air=1)</td>
<td>Evaporation Rate</td>
</tr>
<tr>
<td>194.19</td>
<td></td>
<td>Miscible</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Negligible</td>
<td>Not available</td>
<td>Not Applicable</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

APPEARANCE

White powder; mixes with water.

Biodegradation Hydrotropes are readily biodegradable in water under aerobic conditions according to OECD criteria. There is no known anaerobic biodegradation data on hydrotropes. Due to the presence of the sulfonated aromatic group, hydrotropes are not expected to biodegrade to a significant extent under anaerobic conditions. However, considering their ready aerobic biodegradability and their low potential for adsorption to sediment solids (log Kow), the presence of hydrotropes in anaerobic environments is expected to be negligible.

Removal Removal of hydrotropes from secondary activated sludge sewage treatment has been calculated. Models predict a default 87% removal in wastewater treatment plants (assuming a log Kow value of -2.7 and calculated Henry’s Law constant of 4.90E-18 Pa.m3.mol-1). This output is conservative compared to the measured removal of >94% measured in a modified SCAS (OECD 302A) study with calcium xylene sulfonate. In addition, secondary literature data indicates up to 91.5% carbon removal in a Coupled Units study.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.

STORAGE INCOMPATIBILITY

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

SODIUM P-TOLUENESULFONATE

TOXICITY AND IRRITATION

SODIUM P-TOLUENESULFONATE:

- unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intravenous (mouse) LD50: 1700 mg/kg</td>
<td>Nil Reported</td>
</tr>
</tbody>
</table>

Toxicological data are available and well documented for representative toluenesulfonates, xylenesulfonates and cumenesulfonates.
(including sodium, potassium, ammonium and calcium salts). These data demonstrate that hydrotropes have a low order of acute toxicity by all relevant routes (LC50s range from 100s to 1000s mg/kg), are not genotoxic in vitro or in vivo, show no evidence of a carcinogenic response (or any other systemic toxicity) in 2-year dermal exposure studies, and failed to induce developmental, teratogenic or fertility (sex organ) effects. Adverse effects after repeated long term dosing of hydrotropes to animals included epidermal hyperplasia at the site of application in dermal studies, and decreased relative spleen weight in females in oral studies. The critical adverse effect and corresponding systemic NOAEL is 763 mg a.i./kg bw based upon decreased relative spleen weight in female rats in a 90-day oral study. The NOAEL for local effects, based on epidermal hyperplasia at the site of application, was 440 mg a.i./kg bw for mice in 90-day dermal studies. Hydrotropes can be classified as a negligible-to-slight irritant to skin and a slight-to-moderate irritant to eyes. The irritation potential of aqueous solutions of hydrotropes depends on concentration, and the irritation is lessened with rinsing. Hydrotropes are not considered to be skin sensitisers. HERA Report (Hydrotropes) September 2005.

Section 12 - ECOLOGICAL INFORMATION

No data

Ecotoxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
<th>Bioaccumulation</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>sodium p-toluenesulfonate</td>
<td>HIGH</td>
<td>LOW</td>
<td>HIGH</td>
<td></td>
</tr>
</tbody>
</table>

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate:
- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

sodium p-toluenesulfonate (CAS: 657-84-1) is found on the following regulatory lists;
"Canada Domestic Substances List (DSL)","OECD Representative List of High Production Volume (HPV) Chemicals","US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

Classical classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.