N-Methyl-1,2-phenylenediamine

sc-253116

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
N-Methyl-1,2-phenylenediamine

STATEMENT OF HAZARDOUS NATURE

NFPA

SUPPLIER
Company: Santa Cruz Biotechnology, Inc.
Address:
2145 Delaware Ave
Santa Cruz, CA 95060
Telephone: 800.457.3801 or 831.457.3800
Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305
Emergency Tel: From outside the US and Canada: +800 2436 2255
(1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE
- Intermediate. For the preparation of benzimidazole/ copper enzyme site modelling. Reagent

SYNONYMS
C7-H10-N2, H2NC6H4NHCH3, 2-amino-N-methylaniline, N-methyl-o-phenylenediamine

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

CANADIAN WHMIS SYMBOLS
EMERGENCY OVERVIEW
RISK
May cause SENSITIZATION by skin contact.
Limited evidence of a carcinogenic effect.
Harmful by inhalation, in contact with skin and if swallowed.
Irritating to eyes and skin.

POTENTIAL HEALTH EFFECTS
ACUTE HEALTH EFFECTS

SWALLOWED
- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- The substance and/or its metabolites may bind to hemoglobin inhibiting normal uptake of oxygen. This condition, known as "methemoglobinemia", is a form of oxygen starvation (anoxia). Symptoms include cyanosis (a bluish discoloration skin and mucous membranes) and breathing difficulties. Symptoms may not be evident until several hours after exposure.

At about 15% concentration of blood methemoglobin there is observable cyanosis of the lips, nose and earlobes. Symptoms may be absent although euphoria, flushed face and headache are commonly experienced. At 25-40%, cyanosis is marked but little disability occurs other than that produced on physical exertion. At 40-60%, symptoms include weakness, dizziness, lightheadedness, increasingly severe headache, ataxia, rapid shallow respiration, drowsiness, nausea, vomiting, confusion, lethargy and stupor. Above 60% symptoms include dyspnea, respiratory depression, tachycardia or bradycardia, and convulsions. Levels exceeding 70% may be fatal.

EYE
- This material can cause eye irritation and damage in some persons.

SKIN
- Skin contact with the material may be harmful; systemic effects may result following absorption.
- This material can cause inflammation of the skin on contact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
- The material is not thought to produce respiratory irritation (as classified using animal models). Nevertheless inhalation of vapors, fumes or aerosols, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.
- Inhalation hazard is increased at higher temperatures.

CHRONIC HEALTH EFFECTS
- There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment.
- Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population.
- Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.
- Most arylamines are powerful poisons to the blood-making system. High chronic doses cause congestion of the spleen and tumor formation. Phenylenediamine derivatives can cause skin damage, which generally disappears when exposure ceases.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-methyl-1,2-phenylenediamine</td>
<td>4760-34-3</td>
<td>>98</td>
</tr>
</tbody>
</table>

Section 4 - FIRST AID MEASURES

SWALLOWED
- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
- Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
 - For advice, contact a Poisons Information Center or a doctor.
 - Urgent hospital treatment is likely to be needed.
 - If conscious, give water to drink.
 - INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
NOTE: Wear a protective glove when inducing vomiting by mechanical means.
- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient’s condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

EYE
- If this product comes in contact with the eyes:
 - Wash out immediately with fresh running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - If pain persists or recurs seek medical attention.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN
- If skin contact occurs:
 - Immediately remove all contaminated clothing, including footwear
 - Flush skin and hair with running water (and soap if available).
 - Seek medical attention in event of irritation.

INHALED
- If fumes or combustion products are inhaled remove from contaminated area.
 - Lay patient down. Keep warm and rested.
 - Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
 - Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained.
 - Perform CPR if necessary.
 - Transport to hospital, or doctor.

NOTES TO PHYSICIAN
- The material may induce methemoglobinemia following exposure.
- Initial attention should be directed at oxygen delivery and assisted ventilation if necessary. Hyperbaric oxygen has not demonstrated substantial benefits.
- Hypotension should respond to Trendelenburg's position and intravenous fluids; otherwise dopamine may be needed.
- Symptomatic patients with methemoglobin levels over 30% should receive methylene blue. (Cyanosis, alone, is not an indication for treatment). The usual dose is 1-2 mg/kg of a 1% solution (10 mg/ml) IV over 50 minutes; repeat, using the same dose, if symptoms of hypoxia fail to subside within 1 hour.

BIOLOGICAL EXPOSURE INDEX - BEI These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

<table>
<thead>
<tr>
<th>Determinant</th>
<th>Index</th>
<th>Sampling Time</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Methemoglobin in blood</td>
<td>1.5% of hemoglobin</td>
<td>During or end of shift</td>
<td>B, NS, SQ</td>
</tr>
</tbody>
</table>

B: Background levels occur in specimens collected from subjects NOT exposed

NS: Non-specific determinant; also observed after exposure to other materials

SQ: Semi-quantitative determinant - Interpretation may be ambiguous; should be used as a screening test or confirmatory test.

Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG): Not available
Upper Explosive Limit (%): Not available
Specific Gravity (water=1): 1.075
Lower Explosive Limit (%): Not available

EXTINGUISHING MEDIA
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog - Large fires only.

FIRE FIGHTING
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- Do not approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible.
- Slight fire hazard when exposed to heat or flame.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).
- May emit acid smoke.
- Mists containing combustible materials may be explosive.

Combustion products include: carbon dioxide (CO₂), nitrogen oxides (NOₓ), other pyrolysis products typical of burning organic material. May emit poisonous fumes. May emit corrosive fumes.

FIRE INCOMPATIBILITY
- Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:
Chemical goggles.

Gloves:

Respirator:
Type A Filter of sufficient capacity

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid breathing vapors and contact with skin and eyes.
- Control personal contact by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- Place in a suitable labeled container for waste disposal.

MAJOR SPILLS
- Chemical Class: amines, aryl

<table>
<thead>
<tr>
<th>SORBENT TYPE</th>
<th>RANK</th>
<th>APPLICATION</th>
<th>COLLECTION</th>
<th>LIMITATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND SPILL - SMALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wood fiber - pillow</td>
<td>1</td>
<td>throw</td>
<td>pitchfork</td>
<td>R, P, DGC, RT</td>
</tr>
<tr>
<td>sorbent clay - particulate</td>
<td>2</td>
<td>shovel</td>
<td>shovel</td>
<td>R, I, P</td>
</tr>
<tr>
<td>foamed glass - pillow</td>
<td>2</td>
<td>throw</td>
<td>pitchfork</td>
<td>R, P, DGC, RT</td>
</tr>
<tr>
<td>wood fiber - particulate</td>
<td>3</td>
<td>shovel</td>
<td>shovel</td>
<td>R, W, P, DGC</td>
</tr>
<tr>
<td>treated wood fibre - pillow</td>
<td>3</td>
<td>throw</td>
<td>pitchfork</td>
<td>DGC, RT</td>
</tr>
<tr>
<td>polypropylene - mat</td>
<td>4</td>
<td>throw</td>
<td>pitchfork</td>
<td>DGC, RT</td>
</tr>
<tr>
<td>LAND SPILL - MEDIUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sorbent clay - particulate</td>
<td>1</td>
<td>blower</td>
<td>skiploader</td>
<td>R, I, P</td>
</tr>
<tr>
<td>polypropylene - particulate</td>
<td>1</td>
<td>blower</td>
<td>skiploader</td>
<td>W, SS, DGC</td>
</tr>
<tr>
<td>diatomite - particulate</td>
<td>2</td>
<td>blower</td>
<td>skiploader</td>
<td>R, I, W, P</td>
</tr>
<tr>
<td>expanded mineral - particulate</td>
<td>2</td>
<td>blower</td>
<td>skiploader</td>
<td>R, I, W, P, DGC</td>
</tr>
<tr>
<td>wood fiber - particulate</td>
<td>2</td>
<td>blower</td>
<td>skiploader</td>
<td>R, W, P, DGC</td>
</tr>
<tr>
<td>polypropylene - mat</td>
<td>2</td>
<td>throw</td>
<td>skiploader</td>
<td>DGC, RT</td>
</tr>
</tbody>
</table>

Legend
DGC: Not effective where ground cover is dense
R: Not reusable
I: Not incinerable
P: Effectiveness reduced when rainy
RT: Not effective where terrain is rugged
SS: Not for use within environmentally sensitive sites
W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control; R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988

NOTE:
- Organic absorbents have been known to ignite when contaminated with amines in closed containers. Certain cellulosic materials used for spill cleanup such as wood chips or sawdust have shown reactivity with ethyleneamines and should be avoided. Moderate hazard.
- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
PROTECTIVE ACTIONS FOR SPILL

- No smoking, naked lights or ignition sources. Increase ventilation.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labeled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labeled drums for disposal.
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTION ZONE

From IERG (Canada/Australia)
Isolation Distance -
Downwind Protection Distance -

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered “small spills”. LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a “one-tonne” compressed gas cylinder.

5 Guide No guide found. is taken from the US DOT emergency response guide book.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.

5 of 10
• Keep containers securely sealed when not in use.
• Avoid physical damage to containers.
• Always wash hands with soap and water after handling.
• Work clothes should be laundered separately.
• Use good occupational work practice.
• Observe manufacturer’s storing and handling recommendations.
• Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
• DO NOT allow clothing wet with material to stay in contact with skin

RECOMMENDED STORAGE METHODS

• Metal can or drum
• Packing as recommended by manufacturer.
• Check all containers are clearly labeled and free from leaks.

STORAGE REQUIREMENTS

• Store in original containers.
• Keep containers securely sealed.
• No smoking, naked lights or ignition sources.
• Store in a cool, dry, well-ventilated area.
• Store away from incompatible materials and foodstuff containers.
• Protect containers against physical damage and check regularly for leaks.
• Observe manufacturer’s storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

X: Must not be stored together
O: May be stored together with specific precautions
+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records
• N-methyl-1,2-phenylenediamine: CAS:4760-34-3

MATERIAL DATA

N-METHYL-1,2-PHENYLENEDIAMINE:

• Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers’ responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA. OSHA (USA) concluded that exposure to sensory irritants can:
 • cause inflammation
 • cause increased susceptibility to other irritants and infectious agents
 • lead to permanent injury or dysfunction
 • permit greater absorption of hazardous substances and
 • acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

PERSONAL PROTECTION
Consult your EHS staff for recommendations

EYE
- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET
- Wear chemical protective gloves, eg. PVC.
- Wear safety footwear or safety gumboots, eg. Rubber.

NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.

Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
- Neoprene gloves

OTHER
- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

RESPIRATOR
- Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

<table>
<thead>
<tr>
<th>Breathing Zone Level ppm (volume)</th>
<th>Maximum Protection Factor</th>
<th>Half-face Respirator</th>
<th>Full-Face Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>10</td>
<td>A-1</td>
<td>-</td>
</tr>
<tr>
<td>1000</td>
<td>50</td>
<td>-</td>
<td>A-1</td>
</tr>
<tr>
<td>5000</td>
<td>50</td>
<td>Airline*</td>
<td>-</td>
</tr>
<tr>
<td>5000</td>
<td>100</td>
<td>-</td>
<td>A-2</td>
</tr>
<tr>
<td>10000</td>
<td>100</td>
<td>-</td>
<td>A-3</td>
</tr>
<tr>
<td>100+</td>
<td>Airline* **</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* - Continuous Flow ** - Continuous-flow or positive pressure demand.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required. Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS
- Local exhaust ventilation usually required. If risk of overexposure exists, wear an approved respirator. Correct fit is essential to obtain adequate protection an approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

<table>
<thead>
<tr>
<th>Type of Contaminant:</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent, vapors, degreasing etc., evaporating from tank (in still air).</td>
<td>0.25-0.5 m/s (50-100 f/min.)</td>
</tr>
</tbody>
</table>
aerosols, fumes from pouring operations, intermittent container filling,
low speed conveyer transfers, welding, spray drift, plating acid
fumes, pickling (released at low velocity into zone of active
generation) 0.5-1 m/s (100-200 ft/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer
loading, crusher dusts, gas discharge (active generation into zone of
rapid air motion) 1-2.5 m/s (200-500 ft/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated
dusts (released at high initial velocity into zone of very high rapid air
motion). 2.5-10 m/s (500-2000 ft/min.)

Within each range the appropriate value depends on:

<table>
<thead>
<tr>
<th>Lower end of the range</th>
<th>Upper end of the range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Room air currents minimal or favorable to capture</td>
<td>1: Disturbing room air currents</td>
</tr>
<tr>
<td>2: Contaminants of low toxicity or of nuisance value only.</td>
<td>2: Contaminants of high toxicity</td>
</tr>
<tr>
<td>3: Intermittent, low production.</td>
<td>3: High production, heavy use</td>
</tr>
<tr>
<td>4: Large hood or large air mass in motion</td>
<td>4: Small hood-local control only</td>
</tr>
</tbody>
</table>

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 ft/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

<table>
<thead>
<tr>
<th>State</th>
<th>Liquid</th>
<th>Molecular Weight</th>
<th>122.17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Range (°F)</td>
<td>71.6</td>
<td>Viscosity</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>253.4- 255.2 (10 mm)</td>
<td>Solubility in water (g/L)</td>
<td>Partly miscible</td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>>230</td>
<td>pH (1% solution)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>Not available.</td>
<td>pH (as supplied)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>Not available</td>
<td>Vapour Pressure (mmHG)</td>
<td>Not available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available</td>
<td>Specific Gravity (water=1)</td>
<td>1.075</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
<td>Relative Vapor Density (air=1)</td>
<td>>1</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Not available</td>
<td>Evaporation Rate</td>
<td>Not available</td>
</tr>
</tbody>
</table>

APPEARANCE

Yellow liquid; does not mix well with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

- Many arylamines (aromatic amines such as aniline, N-ethylaniline, o-toluidine, xylidine etc. and their mixtures) are hypergolic (ignite spontaneously) with red fuming nitric acid. When the amines are dissolved in triethylamine, ignition occurs at -60 deg. C. or less.
- Various metal oxides and their salts may promote ignition of amine-red fuming nitric acid systems. Soluble materials such as copper(I) oxide, ammonium metavanadate are effective; insoluble materials such as copper(II) oxide, iron(II) oxide, potassium dichromate are also effective.
- Avoid oxidizing agents, acids, acid chlorides, acid anhydrides.

For incompatible materials - refer to Section 7 - Handling and Storage.
Section 11 - TOXICOLOGICAL INFORMATION

N-METHYL-1,2-PHENYLENEDIAMINE

TOXICITY AND IRRITATION

- Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's edema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitization potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitizing substance which is widely distributed can be a more important allergen than one with stronger sensitizing potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

- p-Phenylenediamines are oxidised by the liver microsomal enzymes (S9). Pure p-phenylenediamine is non-mutagenic in but becomes mutagenic after it is oxidized. Azo dyes containing phenylenediamine are mutagenic in certain assay most likely due to the formation of oxidized p-phenylenediamine. Modification of the moieties that can be metabolized to p-phenylenediamine by sulfonation, carboxylation or copper complexion eliminated the mutagenic responses.

No significant acute toxicological data identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

N-METHYL-1,2-PHENYLENEDIAMINE:

- Phenylenediamines are not readily biodegradable via CO2 evolution, but they are susceptible to both hydrolysis and photodegradation. These materials have been shown not to partition to water or air if released into the environment due to their low water solubility and low vapor pressure. Analytical studies of hydrolysis products indicate that the molecule cleaves at the aromatic carbon-nitrogen bond.

- It is difficult to define clearly the ways in which phenylenediamines are eliminated from the hydrosphere. Elimination processes such as oxidation reactions, adsorption, and stripping effects can only be conjectured. It is impossible to say with any degree of certainty for any of the three isomers what proportion of their elimination is accounted for by biodegradation. The following elimination rates have been found: between 0 and 69 % for o-phenylenediamine, between 0 and 60 % for m-phenylenediamine and between 0 and 100 % for p-phenylenediamine. It is assumed that any phenylenediamines released into the atmosphere are destroyed by photodegradation. The calculated half-life is less than 2 hours. The low POW values indicate that bioaccumulation is unlikely to occur to any significant degree. Only one study has dealt with the behaviour of phenylenediamines in soil, in respect to their soil sorption and geoaccumulation. According to this study, adsorption is relatively strong at low concentrations and expandable clay minerals but quite weak at higher concentrations. No information is available on the sorption behaviour against organic material.

- The substituted p-phenylenediamines and presumably the other isomers, in general, are very toxic to aquatic organisms.

- Aromatic amines (arylamines), particularly primary aromatic amines, covalently and irreversibly bind to humic substances present in most natural waters.

- All metabolites with moieties of: anilines, benzidines and toluidines are of environmental concern. Anilines and benzidines are both acutely toxic and toxic depending on the specific aquatic species (except algae). Toluidines represent a similar concern. It has been speculated that aqueous solutions of aromatic amines can be oxidised by organic radicals, but there are no actual data on reaction rates. Based on a study of reaction rate data for these compounds an estimate of the half-life of aromatic amines in water is approximately 100 days, assuming a peroxy radical concentration of 10-10 mole/L in sunlit, oxygenated water.

- DO NOT discharge into sewer or waterways.

Ecotoxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
<th>Bioaccumulation</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-methyl-1,2-phenylenediamine</td>
<td>HIGH</td>
<td>LOW</td>
<td>MED</td>
<td></td>
</tr>
</tbody>
</table>

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

- All waste must be handled in accordance with local, state and federal regulations.
- Puncture containers to prevent re-use and bury at an authorized landfill.
- Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.
- Recycle wherever possible or consult manufacturer for recycling options.
- Consult Waste Management Authority for disposal.
- Bury or incinerate residue at an approved site.
- Recycle containers if possible, or dispose of in an authorized landfill.
Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

REGULATIONS

N-methyl-1,2-phenylenediamine (CAS: 4760-34-3) is found on the following regulatory lists;
"Canada Non-Domestic Substances List (NDSL)"; "US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE
- Cumulative effects may result following exposure*.
 * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.
 A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Jul-5-2008
Print Date: Sep-2-2010