Palladium(II) chloride

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Palladium(II) chloride

STATEMENT OF HAZARDOUS NATURE

NFPA

SUPPLIER
Company: Santa Cruz Biotechnology, Inc.
Address:
2145 Delaware Ave
Santa Cruz, CA 95060
Telephone: 800.457.3801 or 831.457.3800
Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305
Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE
Photography; in the preparation of images for transfer to porcelain; toning solutions; electroplating parts for clocks and watches; in the manufacture of indelible inks; in the preparation of palladium as a catalyst. PdCl₂ paper for detecting carbon monoxide in gas-pipe leaks. Reduced in solution by hydrogen or CO to produce the metal.

SYNONYMS
Cl₂-Pd, PdCl₂, "palladium(2+) chloride", NCI-C60184, "palladous chloride"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW
RISK
Risk of serious damage to eyes. May cause SENSITIZATION by skin contact. Limited evidence of a carcinogenic effect. Harmful by inhalation, in contact with skin and if swallowed. Irritating to respiratory system and skin. Harmful to aquatic organisms.

POTENTIAL HEALTH EFFECTS
ACUTE HEALTH EFFECTS
SWALLOWED
- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- Colloidal palladium is reported to increase body temperature, producediscoloration and tissue death at the site of injection, decreasebody-weight and cause some destruction of blood cells.
- The platinoids and their compounds as a group are generally poorly absorbed from the gastrointestinal tract and absorption by other parenteral routes, excluding the intravenous (i.v.) route, is also negligible. Absorption by inhalation is generally higher. Following inhalation the majority of the dose is retained in the lungs and upper respiratory tract. After i.v. injection most platinoids distribute in the soft tissues. Excretion is mainly in the urine. (Orally administered platinoids are excreted primarily in the faeces.).

EYE
- If applied to the eyes, this material causes severe eye damage.

SKIN
- Skin contact with the material may be harmful; systemic effects may resultfollowing absorption.
- The material may cause mild but significant inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterized by redness, swelling and blistering.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
- Inhalation of dusts, generated by the material, during the course of normalhandling, may be harmful.
- The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS
- Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.
- There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment.
- Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population.
- Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.
- Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray. There is a weak association between palladium chloride and tumor productionon the basis of a single study.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability:</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Toxicity:</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Reactivity:</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Chronic:</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

NAME CAS RN %
palladium chloride 7647-10-1 >98

Section 4 - FIRST AID MEASURES

SWALLOWED
- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
- Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
 - For advice, contact a Poisons Information Center or a doctor.
 - Urgent hospital treatment is likely to be needed.
 - If conscious, give water to drink.
 - INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

NOTE: Wear a protective glove when inducing vomiting by mechanical means.
- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

EYE
If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN
- If skin contact occurs:
 - Immediately remove all contaminated clothing, including footwear.
 - Flush skin and hair with running water (and soap if available).
 - Seek medical attention in event of irritation.

INHALED
- If fumes or combustion products are inhaled remove from contaminated area.
 - Lay patient down. Keep warm and rested.
 - Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
 - Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
 - Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN
- for poisons (where specific treatment regime is absent):

BASIC TREATMENT
- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for pulmonary edema.
- Monitor and treat, where necessary, for shock.
- Anticipate seizures.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT
- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrythmias.
- Start an IV D5W TKO. If signs of hypovolemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary edema.
- Hypotension with signs of hypovolemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

BRONSTEIN, A.C. and CURRANCE, P.L.
EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994.
Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES

<table>
<thead>
<tr>
<th>Vapour Pressure (mmHG)</th>
<th>Negligible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>4.0</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

EXTINGUISHING MEDIA
- There is no restriction on the type of extinguisher which may be used.
Use extinguishing media suitable for surrounding area.

FIRE FIGHTING
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves for fire only.
- Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.
- Do not approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
- Non combustible.
• Not considered to be a significant fire risk, however containers may burn.
 Decomposition may produce toxic fumes of: hydrogen chloride, metal oxides.
 May emit poisonous fumes.
 May emit corrosive fumes.

FIRE INCOMPATIBILITY
 ■ None known.

PERSONAL PROTECTION
 Glasses:
 Chemical goggles.
 Gloves:
 Respirator:
 Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
 ■
 • Clean up waste regularly and abnormal spills immediately.
 • Avoid breathing dust and contact with skin and eyes.
 • Wear protective clothing, gloves, safety glasses and dust respirator.
 • Use dry clean up procedures and avoid generating dust.
 • Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider
 explosion-proof machines designed to be grounded during storage and use).
 • Dampen with water to prevent dusting before sweeping.
 • Place in suitable containers for disposal.

MAJOR SPILLS
 ■ Moderate hazard.
 • CAUTION: Advise personnel in area.
 • Alert Emergency Responders and tell them location and nature of hazard.
 • Control personal contact by wearing protective clothing.
 • Prevent, by any means available, spillage from entering drains or water courses.
 • Recover product wherever possible.
 • IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other
 containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
 • ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
 • If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)
 AEGL 1: The airborne concentration of a substance above which it is predicted
 that the general population, including susceptible individuals, could
 experience notable discomfort, irritation, or certain asymptomatic nonsensory
 effects. However, the effects are not disabling and are transient and
 reversible upon cessation of exposure.
 AEGL 2: The airborne concentration of a substance above which it is predicted
 that the general population, including susceptible individuals, could
 experience irreversible or other serious, long-lasting adverse health effects
 or an impaired ability to escape.
 AEGL 3: The airborne concentration of a substance above which it is predicted
 that the general population, including susceptible individuals, could
 experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING
 ■
 • Avoid all personal contact, including inhalation.
 • Wear protective clothing when risk of exposure occurs.
 • Use in a well-ventilated area.
 • Prevent concentration in hollows and sumps.
 • DO NOT enter confined spaces until atmosphere has been checked.
 • DO NOT allow material to contact humans, exposed food or food utensils.
 • Avoid contact with incompatible materials.
 • When handling, DO NOT eat, drink or smoke.
 • Keep containers securely sealed when not in use.
 • Avoid physical damage to containers.
 • Always wash hands with soap and water after handling.
 • Work clothes should be laundered separately.
 • Launder contaminated clothing before re-use.
 • Use good occupational work practice.
 • Observe manufacturer's storing and handling recommendations.
 • Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are
 maintained.

RECOMMENDED STORAGE METHODS
 ■
 • Polyethylene or polypropylene container.
 • Check all containers are clearly labelled and free from leaks.
STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer’s storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

+ X + X X +

X: Must not be stored together
O: May be stored together with specific preventions
+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Peak ppm</th>
<th>Peak mg/m³</th>
<th>TWA F/CC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>US - Oregon Permissible Exposure Limits (Z3)</td>
<td>palladium chloride (Inert or Nuisance Dust: (d) Total dust)</td>
<td>10</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z3</td>
<td>palladium chloride (Inert or Nuisance Dust: (d) Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z3</td>
<td>palladium chloride (Inert or Nuisance Dust: (d) Total dust)</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Hawaii Air Contaminant Limits</td>
<td>palladium chloride (Particulates not otherwise regulated - Total dust)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Hawaii Air Contaminant Limits</td>
<td>palladium chloride (Particulates not otherwise regulated - Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Oregon Permissible Exposure Limits (Z3)</td>
<td>palladium chloride (Inert or Nuisance Dust: (d) Respirable fraction)</td>
<td>5</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants</td>
<td>palladium chloride (Particulates not otherwise regulated Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants</td>
<td>palladium chloride (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Michigan Exposure Limits for Air Contaminants</td>
<td>palladium chloride (Particulates not otherwise regulated, Respirable dust)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL DATA

PALLADIUM CHLORIDE:

- It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace. At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers’ responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odor, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:
- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
• lead to permanent injury or dysfunction
• permit greater absorption of hazardous substances and
• acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

■ Safety glasses with side shields.
■ Chemical goggles.
■ Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET

■ NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
• frequency and duration of contact,
• chemical resistance of glove material,
• glove thickness and
• dexterity
Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
• When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
• When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
• Contaminated gloves should be replaced.
Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.
• polychloroprene
• nitrile rubber
• butyl rubber
• fluorocautchouc
• polyvinyl chloride
Gloves should be examined for wear and/or degradation constantly.

OTHER

■ Overalls.
■ P.V.C. apron.
■ Barrier cream.
■ Skin cleansing cream.
■ Eye wash unit.

■ Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory . These may be government mandated or vendor recommended.
Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
Use approved positive flow mask if significant quantities of dust becomes airborne.
Try to avoid creating dust conditions.

RESPRIRATOR

<table>
<thead>
<tr>
<th>Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x PEL</td>
<td>P1</td>
<td>-</td>
<td>PAPR-P1</td>
</tr>
<tr>
<td>50 x PEL</td>
<td>Air-line*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100 x PEL</td>
<td>Air-line**</td>
<td>P2</td>
<td>PAPR-P2</td>
</tr>
<tr>
<td>100+ x PEL</td>
<td>-</td>
<td>P3</td>
<td>-</td>
</tr>
</tbody>
</table>

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:
Class 1 low to medium absorption capacity filters.
Class 2 medium absorption capacity filters.
Class 3 high absorption capacity filters.
PAPR Powered Air Purifying Respirator (positive pressure) cartridge.
Type A for use against certain organic gases and vapors.
Type AX for use against low boiling point organic compounds (less than 65ºC).
Type B for use against certain inorganic gases and other acid gases and vapors.
Type E for use against sulfur dioxide and other acid gases and vapors.
Type K for use against ammonia and organic ammonia derivatives
Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.
Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.
Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

- Local exhaust ventilation usually required. If risk of overexposure exists, wear an approved respirator. Correct fit is essential to obtain adequate protection an approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

<table>
<thead>
<tr>
<th>Type of Contaminant</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent, vapors, degreasing etc., evaporating from tank (in still air)</td>
<td>0.25-0.5 m/s (50-100 f/min.)</td>
</tr>
<tr>
<td>aerosols, fumes from pouring operations, intermittent container filling, low speed conveyor transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)</td>
<td>0.5-1 m/s (100-200 f/min.)</td>
</tr>
<tr>
<td>direct spray, spray painting in shallow booths, drum filling, conveyor loader, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>1-2.5 m/s (200-500 f/min.)</td>
</tr>
<tr>
<td>grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion)</td>
<td>2.5-10 m/s (500-2000 f/min.)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:
- Lower end of the range: 1: Room air currents minimal or favorable to capture, 2: Contaminants of low toxicity or of nuisance value only, 3: Intermittent, low production, 4: Large hood or large air mass in motion
- Upper end of the range: 1: Disturbing room air currents, 2: Contaminants of high toxicity, 3: High production, heavy use
- 4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

<table>
<thead>
<tr>
<th>State</th>
<th>Divided solid</th>
<th>Molecular Weight</th>
<th>177.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Range (°F)</td>
<td>1252.4-1270.4</td>
<td>Viscosity</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>Not available</td>
<td>Solubility in water (g/L)</td>
<td>Miscible</td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>Not applicable</td>
<td>pH (1% solution)</td>
<td>Not available</td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>Not applicable</td>
<td>pH (as supplied)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>Not applicable</td>
<td>Vapour Pressure (mmHG)</td>
<td>Negligible</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not applicable</td>
<td>Specific Gravity (water=1)</td>
<td>4.0</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not applicable</td>
<td>Relative Vapor Density (air=1)</td>
<td>>1</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Negligible</td>
<td>Evaporation Rate</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

APPEARANCE

Reddish-brown crystalline powder; mixes with water, alcohol, acetone.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY
In humans, 88% of chloride is extracellular and contributes to the osmotic activity of body fluids. The electrolyte balance in the body is maintained by adjusting total dietary intake and by excretion via the kidneys and gastrointestinal tract. Chloride is also present in sweat and faeces, but in smaller amounts (4-8% and 2% respectively).

Chloride losses amount to about 1.5-2.5 liters/day, together with about 4 g of chloride per day. Most (90-95%) is excreted in the urine, with almost complete absorption in normal individuals, mostly from the proximal half of the small intestine. Normal fluid loss is compensated by ingested water. Chloride is essential for the maintenance of the extracellular fluid volume and osmolality.

The health-based guideline value is proposed for chloride in drinking-water. Although excessive intake of drinking-water containing sodium chloride at concentrations above 2.5 g/litre has been reported to produce hypertension, this effect is believed to be related to the sodium ion concentration. Chloride concentrations in excess of about 250 mg/litre can give rise to detectable taste in water, but the threshold depends upon the associated cations. Consumers can, however, become accustomed to concentrations in excess of 250 mg/litre. No toxic effects have been observed in humans except in the special case of impaired sodium chloride metabolism, e.g. in congestive heart failure.

Chloride toxicity has not been observed in humans and is not simply determined by its sensitization potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitizing substance which is widely distributed can be a more important allergen than one with stronger sensitizing potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. Convulsions, lung tumors, leukaemia, paternal effects recorded.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's edema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitization potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitizing substance which is widely distributed can be a more important allergen than one with stronger sensitizing potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Industrial bronchitis, on the other hand, is a disorder that occurs as a result of exposure due to high concentrations of irritating substances (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

RADS (or asthma) following an irritating inhalation exposure is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Although inorganic chloride ions are not normally considered toxic they can exist in effluents at acutely toxic levels (chloride >3000 mg/l). The resulting salinity can exceed the tolerances of most freshwater organisms. Inorganic chlorine eventually finds its way into the aqueous compartment and as such is bioavailable. Incident exposure to inorganic chloride may occur in occupational settings where chemicals management policies are improperly applied. The toxicity of chloride salts depends on the counter-ion (cation) present; that of chloride itself is unknown. Chloride toxicity has not been observed in humans except in the special case of impaired sodium chloride metabolism, e.g. in congestive heart failure. Healthy individuals can tolerate the intake of large quantities of chloride provided that there is a concomitant intake of fresh water.

Although excessive intake of drinking-water containing sodium chloride at concentrations above 2.5 g/litre has been reported to produce hypertension, this effect is believed to be related to the sodium ion concentration. Chloride concentrations in excess of about 250 mg/litre can give rise to detectable taste in water, but the threshold depends upon the associated cations. Consumers can, however, become accustomed to concentrations in excess of 250 mg/litre. No health-based guideline value is proposed for chloride in drinking-water.

In humans, 88% of chloride is extracellular and contributes to the osmotic activity of body fluids. The electrolyte balance in the body is maintained by adjusting total dietary intake and by excretion via the kidneys and gastrointestinal tract. Chloride is almost completely absorbed in normal individuals, mostly from the proximal half of the small intestine. Normal fluid loss amounts to about 1.572 liters/day, together with about 4 g of chloride per day. Most (90 - 95%) is excreted in the urine, with minor amounts in faeces (4-8%) and sweat (2%).

Section 11 - TOXICOLOGICAL INFORMATION

palladium chloride

TOXICITY AND IRRITATION

- Unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (rat) LD50: 2704 mg/kg</td>
<td>Skin (rabbit): 100 mg/24h - Mild</td>
</tr>
<tr>
<td>Intraperitoneal (rat) LD50: 70 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Intravenous (rat) LD50: 3 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Intraperitoneal (mouse) LD50: 174 mg/kg</td>
<td></td>
</tr>
</tbody>
</table>

- Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation exposure is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance.

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

PALLADIUM CHLORIDE

- Harmful to aquatic organisms.
- Although inorganic chloride ions are not normally considered toxic they can exist in effluents at acutely toxic levels (chloride >3000 mg/l). The resulting salinity can exceed the tolerances of most freshwater organisms.

Inorganic chlorine eventually finds its way into the aqueous compartment and as such is bioavailable. Incident exposure to inorganic chloride may occur in occupational settings where chemicals management policies are improperly applied. The toxicity of chloride salts depends on the counter-ion (cation) present; that of chloride itself is unknown. Chloride toxicity has not been observed in humans except in the special case of impaired sodium chloride metabolism, e.g. in congestive heart failure. Healthy individuals can tolerate the intake of large quantities of chloride provided that there is a concomitant intake of fresh water.

Although excessive intake of drinking-water containing sodium chloride at concentrations above 2.5 g/litre has been reported to produce hypertension, this effect is believed to be related to the sodium ion concentration. Chloride concentrations in excess of about 250 mg/litre can give rise to detectable taste in water, but the threshold depends upon the associated cations. Consumers can, however, become accustomed to concentrations in excess of 250 mg/litre. No health-based guideline value is proposed for chloride in drinking-water.

In humans, 88% of chloride is extracellular and contributes to the osmotic activity of body fluids. The electrolyte balance in the body is maintained by adjusting total dietary intake and by excretion via the kidneys and gastrointestinal tract. Chloride is almost completely absorbed in normal individuals, mostly from the proximal half of the small intestine. Normal fluid loss amounts to about 1.572 liters/day, together with about 4 g of chloride per day. Most (90 - 95%) is excreted in the urine, with minor amounts in faeces (4-8%) and sweat (2%).
Chloride increases the electrical conductivity of water and thus increases its corrosivity. In metal pipes, chloride reacts with metal ions to form soluble salts thus increasing levels of metals in drinking-water. In lead pipes, a protective oxide layer is built up, but chloride enhances galvanic corrosion. It can also increase the rate of pitting corrosion of metal pipes.

- The date regarding environmental toxicity of palladium and its compounds/salts is very limited.

Palladium chloride

Palladium chloride has a very low effect concentration on Tubifex tubifex and should as such be regarded as very toxic to aquatic organisms.

Palladium is found as Pd(OH)_20 in fresh water, and Pd(OH)_20 and PdCl_4\^- in sea water. Palladium can also bind to organic matter in aquatic environments. The palladium assimilated by algae and plankton is released during degradation of organic material. The relatively high solubility of Pd(II)-ion compounds can result in fast dispersion, impeding accumulation in recipients or other environments that receive palladium, e.g. sludge amended farmland.

Palladium can decrease the enzymatic activity in the organisms that assimilate the metal, due to its ability to bind amino acids.

- For platinum group metals (PGM):
 - Environmental fate:
 - The platinum group metals (PGMs) are a group of rare elements including platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), iridium (Ir) and osmium (Os). Platinum group metals emitted as autocatalyst particles behave in a manner and have limited mobility in soil so there would appear to be negligible risk to health, groundwater and the environment. However, it is possible for transformations to soluble, bioactive forms to occur. The noble metals Pt, Pd and Rh are emitted from automobile catalytic converters. Besides terrestrial habitats, these metals are also introduced into aquatic biotopes by road runoff, where they accumulate in sediments of lakes and rivers and can increase by the presence of natural complexing agents such as humic acids. After the introduction to terrestrial and aquatic habitats, PGM can be taken up by the biosphere. The biological availability of Pt, Pd and Rh is affected by different complexing agents. Uptake and accumulation of PGM by plants and animals was demonstrated in several experiments and field studies. There is, however, little information as to what water quality may affect the biological availability of PGM to aquatic organisms.

 - Investigations with zebra mussels (Dreissena polymorpha) exposed to water containing road dust or ground catalytic converter material demonstrated that humic water of a bog lake clearly enhances the biological availability of particle bound Pt, Pd and Rh as compared with non-chlorinated tap water. In contrast, exposure studies with eels using soluble salts as metal sources showed higher Pt and Rh uptake in tap water than in humic water in most tissues. Pd appears to precipitate quickly and to a high degree in tap water and seems to react mainly with fulvic acids in humic water. Fulvic acids tend to have lower molecular weights than humic acids and humin, so that metal-fulvic acid complexes are probably too small to be filtered by the ctenidia of the mussels. The enhancing effect of humic substances on the aqueous solubility and bioavailability of Rh may be explained by the formation of soluble, high molecular weight Rh-humic acid complexes which are filtered by the ctenidia of the mussels and then ingested. (Deguara and Hunt)

 - DO NOT discharge into sewer or waterways.

Ecotoxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Bioaccumulation</th>
<th>Mobility</th>
<th>Persistence: Air</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>palladium chloride</td>
<td>HIGH</td>
<td>LOW</td>
<td>HIGH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

- Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

- A Hierarchy of Controls seems to be common - the user should investigate:
 - Reduction
 - Reuse
 - Recycling
 - Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.
- Recycle wherever possible or consult manufacturer for recycling options.
- Consult Waste Management Authority for disposal.
- Bury residue in an authorized landfill.
- Recycle containers where possible, or dispose of in an authorized landfill.

Section 14 - TRANSPORTATION INFORMATION

Not regulated for transport of dangerous goods: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

Palladium chloride (CAS: 7647-10-1)

- "Canada Domestic Substances List (DSL),"Canada Ingredient Disclosure List (SOR/88-64),"Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English),"Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (French),"OECD Representative List of High Production Volume (HPV) Chemicals,"US DOE Temporary Emergency Exposure Limits (TEELs),"US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE
Cumulative effects may result following exposure*.
* (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Nov-12-2009
Print Date: Apr-22-2010