Material Safety Data Sheet

Pyridinium tribromide

sc-253331

Hazard Alert Code Key:
EXTREME | HIGH | MODERATE | LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Pyridinium tribromide

STATEMENT OF HAZARDOUS NATURE

NFPA

SUPPLIER
Santa Cruz Biotechnology, Inc.
2145 Delaware Avenue
Santa Cruz, California 95060
800.457.3801 or 831.457.3800

EMERGENCY
ChemWatch
Within the US & Canada: 877–715–9305
Outside the US & Canada: +800 2436 2255
(1–800-CHEMCALL) or call +613 9573 3112

SYNONYMS
C5-H6-Br3-N, C5H5N+HBr-, PBPB, "pyridine hydrobromide perbromide", "pyridine perbromide hydrobromide"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability:</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicity:</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact:</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Reactivity:</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chronic:</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

CANADIAN WHMIS SYMBOLS

1 of 9
EMERGENCY OVERVIEW

RISK
- Causes severe burns.
- Risk of serious damage to eyes.
- Toxic to aquatic organisms.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
- The material can produce severe chemical burns within the oral cavity and gastrointestinal tract following ingestion.
- Ingestion of acidic corrosives may produce burns around and in the mouth, the throat and esophagus.
- Accidental ingestion of the material may be damaging to the health of the individual.
- Bromide poisoning causes intense vomiting so the dose is often removed.
- Effects include drowsiness, irritability, inco-ordination, vertigo, confusion, mania, hallucinations and coma.

EYE
- The material can produce severe chemical burns to the eye following direct contact. Vapors or mists may be extremely irritating.
- If applied to the eyes, this material causes severe eye damage.
- Direct eye contact with acid corrosives may produce pain, tears, sensitivity to light and burns.
- Mild burns of the epithelia generally recover rapidly and completely.
- Pyridine and its derivatives generally produce local irritation on contact with the cornea.

SKIN
- The material can produce severe chemical burns following direct contact with the skin.
- Skin contact with acidic corrosives may result in pain and burns; these may be deep with distinct edges and may heal slowly with the formation of scar tissue.
- Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects.
- Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
- Pyridine and derivatives cause local irritation on skin; absorption through the skin can cause similar effects as inhalation.

INHALED
- The material can cause respiratory irritation in some persons.
- The body's response to such irritation can cause further lung damage.
- Corrosive acids can cause irritation of the respiratory tract, with coughing, choking and mucous membrane damage.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
- Pyridine and its derivatives generally produce local irritation on contact with the mucous membranes.

CHRONIC HEALTH EFFECTS
- Repeated or prolonged exposure to acids may result in the erosion of teeth, swelling and or ulceration of mouth lining. Irritation of airways to lung, with cough, and inflammation of lung tissue often occurs.
- Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.
- There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment.
- Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.
- There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects.
- Long term exposure to high dust concentrations may result in disease of the airways involving difficult breathing and related systemic problems.
- Chronic intoxication with ionic bromides, historically, has resulted from medical use of bromides but not from environmental or occupational exposure; depression, hallucinosis, and schizophreniform psychosis can be seen in the absence of other signs of intoxication. Bromides may also induce sedation, irritability, agitation, delirium, memory loss, confusion, disorientation, forgetfulness (aphasias), dysarthria, weakness, fatigue, vertigo, stupor, coma, decreased appetite, nausea and vomiting, diarrhoea, hallucinations, an acne like rash on the face, legs and trunk, known as bronchodermia (seen in 25-30% of case involving bromide ion), and a profuse discharge from the nostrils (coryza). Ataxia and generalised hyperreflexia have also been observed. Correlation of neurologic symptoms with blood levels of bromide is inexact. The use of substances such as brompheniramine, as antihistamines, largely reflect current day usage of bromides; ionic bromides have been largely withdrawn from therapeutic use due to their toxicity. Several cases of foetal abnormalities have been described in mothers who took large doses of bromides during pregnancy.
- Data from experimental studies indicate that pyridines represent a potential cause of cancer in man. They have also been shown to cross the placental barrier in rats and cause premature delivery, miscarriages and stillbirths.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>pyridinium bromide perbromide</td>
<td>39416-48-3</td>
<td>>98</td>
</tr>
</tbody>
</table>
Section 4 - FIRST AID MEASURES

SWALLOWED
· For advice, contact a Poisons Information Center or a doctor at once. · Urgent hospital treatment is likely to be needed.

EYE
■ If this product comes in contact with the eyes: · Immediately hold eyelids apart and flush the eye continuously with running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN
■ If skin or hair contact occurs: · Immediately flush body and clothes with large amounts of water, using safety shower if available. · Quickly remove all contaminated clothing, including footwear.

INHALED
· If fumes or combustion products are inhaled remove from contaminated area. · Lay patient down. Keep warm and rested. Inhalation of vapors or aerosols (mists, fumes) may cause lung edema. Corrosive substances may cause lung damage (e.g.

NOTES TO PHYSICIAN
■ Treat symptomatically.
For acute or short term repeated exposures to strong acids:
· Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially.
· Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling.

Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG): Negligible
Upper Explosive Limit (%): Not available
Specific Gravity (water=1): Not available
Lower Explosive Limit (%): Not available

EXTINGUISHING MEDIA
· Foam.
· Dry chemical powder.

FIRE FIGHTING
· Alert Emergency Responders and tell them location and nature of hazard.
· Wear full body protective clothing with breathing apparatus.
When any large container (including road and rail tankers) is involved in a fire, consider evacuation by 800 metres in all directions.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
· Combustible.
· Slight fire hazard when exposed to heat or flame.
Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen bromide, nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY
■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION
Glasses:
Safety Glasses.
Full face- shield.
Gloves:
Respirator:
Particulate dust filter.
Acid vapour Type B cartridge/ canister.

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
· Remove all ignition sources.
· Clean up all spills immediately.
· Avoid contact with skin and eyes.
· Control personal contact by using protective equipment.
· Use dry clean up procedures and avoid generating dust.
· Place in a suitable, labelled container for waste disposal.
· Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material.
· Check regularly for spills and leaks.
MAJOR SPILLS
· Clear area of personnel and move upwind.
· Alert Emergency Responders and tell them location and nature of hazard.
Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.
- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS
- DO NOT use aluminum or galvanized containers.
Check regularly for spills and leaks.
- Lined metal can, Lined metal pail/drum
- Plastic pail.
For low viscosity materials
- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

STORAGE REQUIREMENTS
- Store in original containers.
- Keep containers securely sealed.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Peak ppm</th>
<th>Peak mg/m³</th>
<th>TWA F/CC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada - British Columbia Occupational Exposure Limits</td>
<td>pyridinium bromide perbromide (Particles (Insoluble or Poorly Soluble) Not Otherwise Classified (PNOC))</td>
<td>10 (N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants</td>
<td>pyridinium bromide perbromide (Particulates not otherwise regulated (PNOR) (f) Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants</td>
<td>pyridinium bromide perbromide (Particulates not otherwise regulated Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - California Permissible Exposure Limits for Chemical Contaminants</td>
<td>pyridinium bromide perbromide (Particulates not otherwise regulated Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Oregon Permissible Exposure Limits (Z-1)</td>
<td>pyridinium bromide perbromide (Particulates not</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bold print identifies substances for which the</td>
</tr>
</tbody>
</table>
otherwise regulated (PNOR) (f) Total Dust

<table>
<thead>
<tr>
<th>Regulatory Agency</th>
<th>Exposure Limits for Air Contaminants</th>
<th>Permissible Exposure Limits (PELs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US - Michigan</td>
<td>pyridinium bromide perbromide</td>
<td>5</td>
</tr>
<tr>
<td>PERmissible</td>
<td>Particles not otherwise regulated, Respirable dust</td>
<td>5</td>
</tr>
<tr>
<td>Exposure Limits</td>
<td></td>
<td>See Appendix B current TLV/BEI Book</td>
</tr>
<tr>
<td>for Air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contaminants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Oregon</td>
<td>pyridinium bromide perbromide</td>
<td>5</td>
</tr>
<tr>
<td>Oregon</td>
<td>Particles not otherwise regulated, Respirable Fraction</td>
<td>5</td>
</tr>
<tr>
<td>Permissible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposure Limits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>for Air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Z-1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENDOELTABLE

PERSONAL PROTECTION

RESPIRATOR
- BR2
- BR4
Consult your EHS staff for recommendations

EYE
- Chemical goggles.
- Full face shield.

HANDS/FEET
- Elbow length PVC gloves.
Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
dexterity
Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to
EN 374) is recommended.
- Contaminated gloves should be replaced. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER
- Overalls.
- PVC Apron.

ENGINEERING CONTROLS
- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does not mix with water</td>
<td></td>
</tr>
<tr>
<td>Corrosive</td>
<td></td>
</tr>
<tr>
<td>Acid</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>DIVIDED SOLID</td>
</tr>
<tr>
<td>Melting Range (°F)</td>
<td>275-279 (decomp)</td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>Not available (decomp)</td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>Not available</td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Negligible</td>
</tr>
</tbody>
</table>

APPEARANCE

Red crystalline powder; does not mix well with water. Can be used in glacial acetic acid, ethanol and related solvents.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY
- Contact with alkaline material liberates heat.
- Presence of incompatible materials.
- Product is considered stable.

STORAGE INCOMPATIBILITY
- Reacts with mild steel, galvanized steel / zinc producing hydrogen gas which may form an explosive mixture with air.
- Avoid strong bases.
- Segregate from alkalis, oxidizing agents and chemicals readily decomposed by acids, i.e. cyanides, sulfides, carbonates.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

PYRIDINIUM BROMIDE PERBROMIDE

pyridinium bromide perbromide

TOXICITY AND IRRITATION

PYRIDINIUM BROMIDE PERBROMIDE:
- unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.
- Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.
- The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.
- The material may produce respiratory tract irritation, and result in damage to the lung including reduced lung function.
- The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the
production of vesicles, scaling and thickening of the skin.

For quaternary ammonium compounds (QACs):
Quaternary ammonium compounds (QACs) are cationic surfactants. They are synthetic organically tetra-substituted ammonium compounds, where at least one of the R substituents are alkyl or heterocyclic radicals. A common characteristic of these synthetic compounds is that one of the R's is a long-chain hydrophobic aliphatic residue

The cationic surface active compounds are in general more toxic than the anionic and non-ionic surfactants. The positively-charged cationic portion is the functional part of the molecule and the local irritation effects of QACs appear to result from the quaternary ammonium cation. Due to their relative ability to solubilise phospholipids and cholesterol in lipid membranes, QACs affect cell permeability which may lead to cell death. Further QACs denature proteins as cationic materials precipitate protein and are accompanied by generalised tissue irritation.

It has been suggested that the experimentally determined decrease in acute toxicity of QACs with chain lengths above C16 is due to decreased water solubility.

In general it appears that QACs with a single long-chain alkyl groups are more toxic and irritating than those with two such substitutions.

The straight chain aliphatic QACs have been shown to release histamine from minced guinea pig lung tissue. However, studies with benzalkonium chloride have shown that the effect on histamine release depends on the concentration of the solution. When cell suspensions (11% mast cells) from rats were exposed to low concentrations, a decrease in histamine release was seen. When exposed to high concentrations the opposite result was obtained.

In addition, QACs may show curare-like properties (specifically benzalkonium and cetlypyridinium derivatives, a muscular paralysis with no involvement of the central nervous system. This is most often associated with lethal doses Parenteral injections in rats, rabbits and dogs have resulted in prompt but transient limb paralysis and sometimes fatal paresis of the respiratory muscles. This effect seems to be transient.

From human testing of different QACs the generalised conclusion is obtained that all the compounds investigated to date exhibit similar toxicological properties.

Acute toxicity: Studies in rats have indicated poor intestinal absorption of QACs. Acute toxicity of QACs varies with the compound and, especially, the route of administration. For some substances the LD50 value is several hundreds times lower by the i.p. or i.v. than the oral route, whereas toxicities between the congener only differ in the range of two to five times.

At least some QACs are significantly more toxic in 50% dimethyl sulfoxide than in plain water when given orally. Probably all common QAC derivatives produce similar toxic reactions, but as tested in laboratory animals the oral mean lethal dose varies with the compound.

Oral toxicity: LD50 values for QACs have been reported within the range of 250-1000 mg/kg for rats, 150-1000 mg/kg for mice, 150-300 mg/kg for guinea pigs and about 500 mg/kg b.w. for rabbits and dogs. The ranges observed reflect differences in the study designs of these rather old experiments as well as differences between the various QACs.

The oral route of administration was characterised by delayed deaths, gastrointestinal lesions and respiratory and central nervous system depression. It was also found that given into a full stomach, the QACs lead to lower mortality and fewer gastrointestinal symptoms. This support the suggestion of an irritating effect.

Dermal toxicity: It has been concluded that the maximum concentration that did not produce irritating effect on intact skin is 0.1%. Irritation became manifest in the 1-10% range. Concentrations below 0.1% have caused irritation in persons with contact dermatitis or broken skin. Although the absorption of QACs through normal skin probably is of less importance than by other routes, studies with excised guinea pig skin have shown that the permeability constants strongly depends on the exposure time and type of skin

Sensitisation: Topical mucosal application of QACs may produce sensitisation. Reports on case stories and patch test have shown that compounds such as benzalkonium chloride, cetalkonium chloride and cetrimide may possibly act as sensitisers. However, in general it is suggested that QACs have a low potential for sensitising man. It is difficult to distinguish between an allergic and an irritative skin reaction due to the inherent skin irritating effect of QACs.

Long term/repeated exposure:
Inhalation: A group of 196 farmers (with or without respiratory symptoms) were evaluated for the relationship between exposure to QACs (unspecified, exposure levels not given) and respiratory disorders by testing for lung function and bronchial responsiveness to histamine. After histamine provocation statistically significant associations were found between the prevalence of mild bronchial responsiveness (including asthma-like symptoms) and the use of QACs as disinfectant. The association seems even stronger in people without respiratory symptoms.

Genotoxicity: QACs have been investigated for mutagenicity in microbial test systems. In Ames tests using Salmonella typhimurium with and without metabolic activation no signs of mutagenicity has been observed. Negative results were also obtained in E. coli reversion and B. subtilis rec assays. However, for benzalkonium chloride also positive and equivocal results were seen in the B. subtilis rec assays.

No significant acute toxicological data identified in literature search.

CARCINOGEN

<table>
<thead>
<tr>
<th>BROMINE COMPOUNDS (ORGANIC OR INORGANIC)</th>
<th>US Environmental Defense Scorecard Suspected Carcinogens</th>
<th>Reference(s)</th>
<th>P65-MC</th>
</tr>
</thead>
</table>

Section 12 - ECOLOGICAL INFORMATION

Toxic to aquatic organisms.

This material and its container must be disposed of as hazardous waste.

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions
A. General Product Information
Corrosivity characteristic: use EPA hazardous waste number D002 (waste code C)

Disposal Instructions
All waste must be handled in accordance with local, state and federal regulations. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.
A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

Section 14 - TRANSPORTATION INFORMATION

DOT:
Symbols: None Hazard class or Division: 8
Identification Numbers: UN3261 PG: II
Label Codes: 8 Special provisions: IB8, IP2, IP4, T3, TP33
Packaging: Exceptions: 154 Packaging: Non-bulk: 212
Packaging: Exceptions: 154 Quantity limitations: 15 kg
Passenger aircraft/rail:
Quantity Limitations: Cargo 50 kg Vessel stowage: Location: B
aircraft only:
Vessel stowage: Other: None
Hazardous materials descriptions and proper shipping names:
Corrosive solid, acidic, organic, n.o.s.

Air Transport IATA:
ICAO/IATA Class: 8 ICAO/IATA Subrisk: None
UN/ID Number: 3261 Packing Group: II
Special provisions: A3
Cargo Only
Packaging Instructions: 50 kg Maximum Qty/Pack: 15 kg
Passenger and Cargo Passenger and Cargo
Packaging Instructions: 863 Maximum Qty/Pack: 859
Passenger and Cargo Limited Quantity Passenger and Cargo Limited Quantity
Packaging Instructions: 5 kg Maximum Qty/Pack: Y844
Shipping Name: CORROSIVE SOLID, ACIDIC, ORGANIC, N.O.S.
*(CONTAINS PYRIDINIUM BROMIDE PERBROMIDE)

Maritime Transport IMDG:
IMDG Class: 8 IMDG Subrisk: None
UN Number: 3261 Packing Group: II
EMS Number: F-A , S-B Special provisions: 274
Limited Quantities: 1 kg
Shipping Name: CORROSIVE SOLID, ACIDIC, ORGANIC, N.O.S.
(contains pyridinium bromide perbromide)

Section 15 - REGULATORY INFORMATION

pyridinium bromide perbromide (CAS: 39416-48-3) is found on the following regulatory lists;
"Canada Non-Domestic Substances List (NDSL)","US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

ND
Substance CAS Suggested codes pyridinium bromide perbromide 39416- 48- 3 Xn; R22

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the
reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Feb-20-2009
Print Date: Mar-22-2011