sc-253763

Material Safety Data Sheet

The Power to Oscotion

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Trimethylamine N-oxide

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

SUPPLIER

Company: Santa Cruz Biotechnology, Inc.

Address:

2145 Delaware Ave Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and Canada:

877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436 2255

(1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

■ Nonionic surfactant. Amine oxides, known as N-oxides of tertiary amines, are classified as aromatic or aliphatic, depending on whether the nitrogen is part of an aromatic ring system or not. This structural difference accounts for the difference in chemical and physical properties between the two types. The higher aliphatic amine oxides are commercially important because of their surfactant properties and are used extensively in detergents. Amine oxides that have surface-acting properties can be further categorised as nonionic surfactants; however, because under acidic conditions they show cationic properties, they have also been called cationic surfactants. Most amine oxides undergo thermal decomposition between 90 and 200°C. Aromatic amine oxides, have some pharmaceutical importance, do not demonstrate surface-acting properties and are more resistant than aliphatic amine oxides to reduction. Linear alpha-olefins are the source of the largest volume of aliphatic amine oxides. Fatty alcohols and fatty acids are also used to produce amine oxides. Amine oxides used in industry are prepared by oxidation of tertiary amines with hydrogen peroxide solution. Amine oxides are used in the detergent, organic synthesis, textile, and pharmaceutical industries. Aliphatic amine oxides range from practically nontoxic to slightly toxic. A reagent for the liberation of organic molecules from their complexes with iron carbonyls by oxidation; for the oxidation of organoboranes; oxidant for the the catalytic OsO4 cids-hydroxylation of hindered olefins; for the preparation of unstable, crystalline anhydrous products.

SYNONYMS

C3-H9-N-O, C3-H9-N-O, (CH3)3NO, "N, N-dimethylmethanamine oxide", "N, N-dimethylmethanamine oxide", "methanamine oxide, N, N-dimethyl-", "methanamine oxide, N, N-dimethyl-"

Section 2 - HAZARDS IDENTIFICATION

sc-253763

The Power to Question

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

Irritating to skin.
Risk of serious damage to eyes.
Very toxic to aquatic organisms.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Accidental ingestion of the material may be damaging to the health of the individual.
- Nonionic surfactants may produce localized irritation of the oral or gastrointestinal lining and induce vomiting and mild diarrhea.
- Amines without benzene rings when swallowed are absorbed throughout the gut. Corrosive action may cause damage throughout the gastrointestinal tract. They are removed through the liver, kidney and intestinal mucosa by enzyme breakdown.

EYE

■ If applied to the eyes, this material causes severe eye damage.

SKIN

- This material can cause inflammation of the skin oncontact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
- Solution of material in moisture on the skin, or perspiration, may markedly increase skin corrosion and accelerate tissue destruction.

INHALED

- The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified using animal models). Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

■ Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

There is limited evidence that, skin contact with this product is more likely to cause a sensitization reaction in some persons compared to the general population.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Prolonged or repeated skin contact may cause degreasing with drying, cracking and dermatitis following.

Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

sc-253763

The Power to Questio

Hazard Alert Code Key	y:	EXTREME	HIGH	MODERATE	LOW
HAZARD RATINGS					
		Min	Max		
Flammability:	1		<u>-</u>		
Toxicity:	2			A A YV	
Body Contact:	3		Min/Nil=0 Low=1	Y	
Reactivity:	1		Moderate=2		73
Chronic:	2		High=3 Extreme=4		
NAME				CAS RN	%
trimethylamine N-oxide				1184-78-7	>98

Section 4 - FIRST AID MEASURES

SWALLOWED

- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.

EYE

- If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the
 upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

■ If skin contact occurs:

- Immediately remove all contaminated clothing, including footwear
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Other measures are usually unnecessary.

NOTES TO PHYSICIAN

- For acute or short-term repeated exposures to highly alkaline materials:
- Respiratory stress is uncommon but present occasionally because of soft tissue edema.
- Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary.
- Oxygen is given as indicated.
- The presence of shock suggests perforation and mandates an intravenous line and fluid administration.
- Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilization of proteins allow deep penetration into the tissue.

Alkalis continue to cause damage after exposure.

INGESTION:

sc-253763

Material Safety Data Sheet

The Power to Ownto

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Milk and water are the preferred diluents

No more than 2 glasses of water should be given to an adult.

- Neutralizing agents should never be given since exothermic heat reaction may compound injury.
- * Catharsis and emesis are absolutely contra-indicated.
- * Activated charcoal does not absorb alkali.
- * Gastric lavage should not be used.

Supportive care involves the following:

- Withhold oral feedings initially.
- If endoscopy confirms transmucosal injury start steroids only within the first 48 hours.
- Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention.
- Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia).

SKIN AND EYE:

- Injury should be irrigated for 20-30 minutes.
- Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology]

	Section 5 - FIRE FIGHTING MEASURES
Vapour Pressure (mmHG):	Negligible
Upper Explosive Limit (%):	Not available.
Specific Gravity (water=1):	Not available
Lower Explosive Limit (%):	Not available

EXTINGUISHING MEDIA

- Water spray or fog.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.

FIRE FIGHTING

- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

Combustible solid which burns but propagates flame with difficulty.

- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY

sc-253763

The Power to Owntie

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

Respirator:

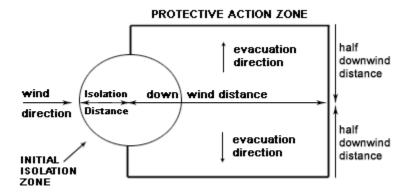
Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.

Environmental hazard - contain spillage.


MAJOR SPILLS

■ Environmental hazard - contain spillage.

Moderate hazard.

- CAUTION: Advise personnel in area.
- Alert Emergency Responders and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

From IERG (Canada/Australia)
Isolation Distance Downwind Protection Distance 10 meters

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction.

sc-253763

The Power to Ownsio

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.

- 5 Guide 171 is taken from the US DOT emergency response guide book.
- 6 IERG information is derived from CANUTEC Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

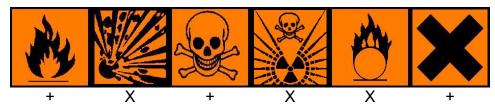
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.
- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- Care should be taken to prevent contamination of the amine oxides with metal salts that might catalyse decomposition reactions. Amine oxides are normally stored in polythene-, or glass- lined vessels to prevent product degradation.
- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

sc-253763

Material Safety Data Sheet


The Power to Ownto

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

STORAGE REQUIREMENTS

■ Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
US - Oregon Permissible Exposure Limits (Z3)	trimethylamine N-oxide (Inert or Nuisance Dust: (d) Total dust)		10						*
US OSHA Permissible Exposure Levels (PELs) - Table Z3	trimethylamine N-oxide (Inert or Nuisance Dust: (d) Respirable fraction)		5						
US OSHA Permissible Exposure Levels (PELs) - Table Z3	trimethylamine N-oxide (Inert or Nuisance Dust: (d) Total dust)		15						
US - Hawaii Air Contaminant Limits	trimethylamine N-oxide (Particulates not other wise regulated - Total dust)		10						
US - Hawaii Air Contaminant Limits	trimethylamine N-oxide (Particulates not other wise regulated - Respirable fraction)		5						
US - Oregon Permissible Exposure Limits (Z3)	trimethylamine N-oxide (Inert or Nuisance Dust: (d) Respirable fraction)		5						*
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	trimethylamine N-oxide (Particulates not otherwise regulated Respirable fraction)		5						
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	trimethylamine N-oxide (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)		5						
US - Michigan Exposure Limits for Air Contaminants	trimethylamine N-oxide (Particulates not otherwise regulated, Respirable dust)		5						

MATERIAL DATA

TRIMETHYLAMINE N-OXIDE:

■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is

sc-253763

Material Safety Data Sheet

The Power to Question

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- · cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET

■ NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

sc-253763

The Power to Ownsio

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW
------------------------	---------	------	----------	-----

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory. These
 may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part
 of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3

^{* -} Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply.

sc-253763

The Power in Ownie

Hazard Alert Code Key:	EXTREME	HIGH N	MODERATE L	LOW
------------------------	---------	--------	------------	-----

Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used

ENGINEERING CONTROLS

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a
 certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered.
 Such protection might consist of:
- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;
- (c): fresh-air hoods or masks
- Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)
Within each range the appropriate value depends on:	
Lower end of the range	Upper end of the range
1: Room air currents minimal or favorable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.

Mixes with water.

Alkaline.

State	Divided solid	Molecular Weight	75.11
Melting Range (°F)	428- 431.6	Viscosity	Not available
Boiling Range (°F)	Not available	Solubility in water (g/L)	Miscible
Flash Point (°F)	Not available	pH (1% solution)	Not available
Decomposition Temp (°F)	Not available	pH (as supplied)	Not applicable

sc-253763

Material Safety Data Sheet

The Power to Questio

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW
Autoignition Temp (°F)	Not available	Vapour P	ressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available.	Specific C	Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available	Relative \	/apor Density (air=1)	>1
Volatile Component (%vol)	Negligible	Evaporati	on Rate	Not applicable

APPEARANCE

Off-white to white crystalline powder; mixes with water. Produces strong alkaline reaction. Anhydrous at 96 deg C.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

- Avoid strong acids.
- Avoid contact with copper, aluminium and their alloys.

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

trimethylamine N-oxide

TOXICITY AND IRRITATION

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY IRRITATION

Oral (rat) LD50: 8700 mg/kg Eye (rabbit): 500 mg/24h - Mild

■ For amine oxides (AOs):

Substantial data exist for mammalian toxicity by in vitro and in vivo testing. Amine oxides are produced, and transported in aqueous solutions that are 25-35% concentration and most tests were conducted with aqueous solutions in that concentration range. Sometimes aqueous formulations were tested where the AO was at lesser concentrations than 25-35%. Whatever concentration were tested, results are reported below for the active ingredient, amine oxide, in mg AO/kg bw for dermal and oral acute toxicity results and mg AO/kg bw/day for repeated dose studies.

Toxicokinetic and metabolism studies indicate AOs are extensively metabolised and readily excreted after oral administration. Amine oxide was readily absorbed dermally by rats, mice and rabbits after 24 to 72 hours of exposure. After 8 hours of dermal exposure, humans absorbed <1%.

Acute toxicity: In rat oral acute toxicity limit tests, no deaths occurred at single doses of 600 mg C10-16 AO/kg bw or less (for CAS No 70592-80-2). In multi-dose studies, acute oral LD50 values for rats ranged from 846 mg AO/kg bw to 3873 mg AO/kg bw (both values for CAS No 61788-90-7), with several other AOs having rat oral LD50s falling within this range. In single dose acute dermal toxicity limit tests, no deaths occurred at a dose of 520 mg AO/kg bw (CAS No 70592-80-2). This dose was equivalent to 2 mL/kg of a 30% formulation. There were no deaths observed in a rat acute inhalation study to aerosol droplets of a consumer product providing a dose of 0.016 mg AO/L.

In a series of studies on rabbits, AOs of varying chain length showed consistent results and all

- were not irritating to the skin or eyes at low concentrations (1%),
- were moderately irritating at 5%, and
- more severely irritating when tested as produced (e.g., ~30% aqueous solutions).

sc-253763

Material Safety Data Sheet

The Power to Question

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

In studies that included rinsing, eye irritation effects diminished with rinsing after 30 seconds of exposure and were slight with rinsing after 4 seconds of exposure. In Draize rabbit eye irritation tests using ~30% AO solutions, rabbits experienced severe to moderate irritation. (The maximum concentration of AO is 10% active in consumer products.) Accidental eye exposure in manufacturing employee incidents and consumer incidents established that eye irritation effects of exposure during manufacturing and use of products containing AO and other surfactants are moderate, transient and reversible

There is no indication of skin sensitisation for the AO category based on the available animal and human data.

Repeat dose toxicity: In four repeated-dose studies with rats and mice exposed to AO via oral and dermal routes (all with CAS No 70592-80-2), three dermal studies were designed to assess the effect of repeated exposure on skin at maximum doses of 1.5 mg AO/kg-bw/day. Higher doses were tested in a 90-day dietary study with rabbits. No treatment related clinical chemistry, hematology and histopathological changes were observed. In these studies, LOAELs ranged from 87 to 150 mg AO/kg bw/day with the highest oral NOAEL below the lowest LOAEL as 80 mg AO/kg bw/day. Signs of toxicity observed in the oral study included suppressed mean body weight gain, lenticular opacities and diarrhea: in the dermal studies, local dermal irritation was evident.

Genetic toxicity: In five in vitro bacterial (Salmonella) mutagenicity studies, AO shows no evidence of mutagenicity either with or without S9 metabolic activation at concentrations up to 250 ug/plate (higher concentrations caused cytotoxicity).

Three in vivo studies investigated clastogenic effects on a close structural analog of the category, 1-

(methyldodecyl)dimethylamine-N-oxide including: a mouse micronucleus, a Chinese hamster micronucleus and a Chinese hamster cytogenetics study. These studies were all negative showing no increase in micronuclei or chromosome aberrations. An in vivo mouse dominant lethal assay showed no evidence of heritable effects. Two AOs (CAS No 1643-20-5 and CAS No 3332-27-2) were negative in an in vitro cell transformation assay tested at concentrations up to 20 ug/ml.

Carcinogenicity: The carcinogenic potential of amine oxides has been thoroughly investigated in three carcinogenicity studies in rats or mice by dermal, dietary, or drinking water routes. In all cases the substances demonstrated no evidence of a carcinogenic response.

Reproductive and developmental toxicity: No evidence of reproductive toxicity or fertility effects was observed in a study in which rats were given dietary doses of AO in the diet over two generations (CAS No 1643-20-5). No macroscopic or histopathological changes were attributable to treatment with the test substance. The maternal NOAEL from this reproductive study was >40 mg AO/kg bw/day, which was the highest dose tested. At all treatment levels, the rate of bodyweight gain for the F1 and F2 offspring was reduced during the lactation period, however, this reduction was not greater than 10%. This effect appeared to be dose-related, but was not statistically significant until after weaning in the mid and high dose levels. This was not considered an adverse effect since the body weight change only reached statistical significance when the rat pups were getting the majority of their calories from solid food (Developmental NOAEL >40 mg/kg bw/day).

In three developmental toxicity studies via gavage in rats and rabbits (with CAS No 1643-20-5 & 70592-80-2), effects such as decreased foetal weight or delayed ossification, were most often observed only at maternally toxic doses and were associated with the irritation effects of AO on the gastrointestinal tract. No decreases in litter size, no changes in litter parameters, no malformations or significant differences in skeletal defects were observed at oral doses up to 25 mg/kg bw/day in rats (based on decreased foetal weight at 100 mg/kg bw/day) and >160 mg/kg bw/day in rabbits (the highest dose tested).

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

for dihydrate:

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

TRIMETHYLAMINE N-OXIDE:

- Very toxic to aquatic organisms.
- Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

■ For amine oxides:

Environmental fate:

sc-253763

Material Safety Data Sheet

The Power in Oscotion

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

The chemicals of the amine oxides category do not exist as "pure" substances, but are produced, transported and used as aqueous solutions, typically within a range of 25-35% AO/water. Experimental values for melting points of C10 to C16 amine oxides range from 125 to 136 C. Amine oxides undergo Cope elimination, i.e., the formation of an olefin and a hydroxylamine by pyrolysis of an amine oxide, in the temperature range 150-200 C, thus decomposition is likely to occur before the melting point is reached, and all boiling points are predicted to be far above the decomposition temperature. Amine oxides are not volatile: predicted vapor pressure values are < 4.6E-7 hPa. Amine oxides are highly water soluble - measured values for a C12.6 average chain length is ~410 g/L.

Although it is impossible to accurately measure an octanol-water partition coefficient for surface-active agents like amine oxides, an octanol-water partition coefficient (Log value) of < 2.7 has been calculated for amine oxides of chain length C14 and below. The predicted atmospheric oxidation half lives are of the order of 5 hours, indicating a relatively rapid atmospheric degradation potential.

Amine oxides are removed by conventional sewage treatment systems and biodegrade under aerobic and anaerobic conditions. Of the collected data, four amine oxides meet the "readily biodegradable" OECD criterion, two are "ultimately biodegradable," and two are "inherently biodegradable." These studies are conducted on complex mixtures with a high degree of alkyl chain length overlap. Further, biodegradation is not dependent on chain length. Removal of amine oxides in biological wastewater treatment has been studied in laboratory simulation studies (>99.8% removal, OECD 303A study) as well as through monitoring activities in different geographies; the main removal mechanism can be attributed to mineralisation and an average removal number of 98% can be assumed as applicable for secondary activated sludge treatment. Level III fugacity modeling, using loading rates for air, soil, and water of 1000 kg/h for each media, shows water receiving compartment receiving 99.5%; the other compartments are negligible. The bioconcentration factor for amine oxides <87, based on log Kow data, indicating low potential for bioaccumulation in aquatic organisms.

Based on hazard data, freshwater green algae are considered the most sensitive species, for acute and chronic endpoints. Acute toxicity is affected by chain length for fish and invertebrates. Chain length affects hydrophobicity, wherein longer chain-lengths increase the rate of uptake and decrease depuration.

The range of acute LC50/EC50/ErC50 values based on a review of the aquatic toxicity data on AO were 0.60-32 mg/L for fish, 0.50-10.8 mg/L for Daphnia magna and 0.010-5.30 mg/L for algae. Chronic toxicity data were normalised to a chain length of 12.9 carbon atoms, as this average chain length represents the largest volume product for North America (CAS No 70952-80-2). Chronic toxicity (NOEC, EC20) for an amine oxide of average chain length of C12.9 ranged as follows for the different trophic levels: 0.010-1.72 mg/L for algae, 0.28 mg/L for Daphnia (flow through) and 0.31 mg/L for fish (flow through). These are based on geometric mean values, and a dataset of 21 chronic toxicity studies. Based on a chronic periphyton microcosm bioassay that included 110 taxa of algae (most sensitive species), a NOEC value of 0.050 mg/L was derived when normalized for a C12.9 amine oxide.

■ Octanol/ water partition coefficients cannot easily be determined for surfactants because one part of the molecule is hydrophilic and the other part is hydrophobic. Consequently they tend to accumulate at the interface and are not extracted into one or other of the liquid phases. As a result surfactants are expected to transfer slowly, for example, from water into the flesh of fish. During this process, readily biodegradable surfactants are expected to be metabolized rapidly during the process of bioaccumulation. This was emphasized by the OECD Expert Group stating that chemicals are not to be considered to show bioaccumulation potential if they are readily biodegradable. Several anionic and nonionic surfactants have been investigated to evaluate their potential to bioconcentrate in fish. BCF values (BCF - bioconcentration factor) ranging from 1 to 350 were found. These are absolute maximum values resulting from the radio labeling technique used. In all these studies, substantial oxidative metabolism was found resulting in the highest radioactivity in the gall bladder. This indicates liver transformation of the parent compound and biliary excretion of the metabolized compounds, so that "real" bioconcentration is overstated. After correction it can be expected that "real" parent BCF values are one order of magnitude less than those indicated above, i.e. "real" BCF is <100. Therefore the usual data used for classification by EU Directives to determine whether a substance is "Dangerous to the Environment" has little bearing on whether the use of the surfactant is environmentally acceptable.

■ DO NOT discharge into sewer or waterways.

Ecotoxicity

Ingredient Persistence: Water/Soil Persistence: Air Bioaccumulation Mobility trimethylamine N-oxide HIGH LOW HIGH

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling

sc-253763

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME	HIGH	MODERATE	LOW
--------------------------------	------	----------	-----

Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

П	\cap	т	7
$\boldsymbol{\nu}$	v		•

Symbols:	G	Hazard class or Division:	9		
Identification Numbers:	UN3077	PG:	III		
Label Codes:	9	Special provisions:	8, 146, 335, B54, IB8, IP3, N20, T1, TP33		
Packaging: Exceptions:	155	Packaging: Non-bulk:	213		
Packaging: Exceptions:	155	Quantity limitations: Passenger aircraft/rail:	No limit		
Quantity Limitations: Cargo aircraft only:	No limit	Vessel stowage: Location:	Α		
Vessel stowage: Other:	None				
Hazardous materials descriptions and proper shipping names:					

Hazardous materials descriptions and proper shipping names:

Environmentally hazardous substance, solid, n.o.s

Air Transport IATA:

ICAO/IATA Class:	9	ICAO/IATA Subrisk:	麵
UN/ID Number:	3077	Packing Group:	III
Special provisions:	A97		

Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. *(CONTAINS TRIMETHYLAMINE N-OXIDE)

Maritime Transport IMDG:

IMDG Class:	9	IMDG Subrisk:	None
UN Number:	3077	Packing Group:	III
EMS Number:	F-A,S-F	Special provisions:	274 909 944
Limited Quantities:	5 kg		

Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.(contains trimethylamine N-oxide)

Section 15 - REGULATORY INFORMATION

sc-253763

The Power to Ownto

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

trimethylamine N-oxide (CAS: 1184-78-7,62637-93-8) is found on the following regulatory lists;

"Canada Non-Domestic Substances List (NDSL)", "US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Ingestion may produce health damage*.
- Cumulative effects may result following exposure*.
- Possible skin sensitizer*.
- Repeated exposure potentially causes skin dryness and cracking*.
- * (limited evidence).

Ingredients with multiple CAS Nos

Ingredient Name CAS

trimethylamine N-oxide 1184-78-7, 62637-93-8

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Apr-9-2009 Print Date:May-14-2010