Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Chlorosulfonyl isocyanate

STATEMENT OF HAZARDOUS NATURE

NFPA

SUPPLIER
Company: Santa Cruz Biotechnology, Inc.
Address:
2145 Delaware Ave
Santa Cruz, CA 95060
Telephone: 800.457.3801 or 831.457.3800
Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305
Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE
■ Intermediate. Most chemically reactive isocyanate known. Used as the thiolate activating agent in the direct preparation of fluorinated imides. The structure of CSI is represented as ClS(O)2-N=C=O. It consists of two electron-withdrawing components, the chlorosulfonyl group (SO2Cl) and the isocyanate group (-N=C=O). Because of its resulting electrophilicity, the use of CSI in chemical synthesis requires relatively inert solvents such as chlorocarbons, acetonitrile, and ethers Intermediate

SYNONYMS
C-Cl-N-O3-S, ClSO2NCO, "N-carbonylsulfamyl chloride", "sulfuryl chloride isocyanate", "isocyanic acid anhydride with chlorosulfonic acid", "N-chlorosulfonyl isocyanate", "chlorosulphonyl isocyanate", "sulfonyl chloride isocyanate", CSIS

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
INHALATION HAZARD
Inhalation hazard is increased at higher temperatures. Exposure to isocyanate through the respiratory tract can cause irritant reactions ranging from minor respiratory irritation to severe bronchitis and pulmonary edema. Possible neurological symptoms arising from isocyanate exposure include headache, insomnia, euphoria, ataxia, anxiety neurosis, depression, and paranoia. Gastrointestinal disturbances are characterized by nausea and vomiting.

POTENTIAL HEALTH EFFECTS
ACUTE HEALTH EFFECTS

SWALLOWED
- The material can produce severe chemical burns within the oral cavity and gastrointestinal tract following ingestion.
- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- Ingestion of acidic corrosives may produce burns around and in the mouth. Immediate pain and difficulties in swallowing and speaking may also be evident. Swelling of the epiglottis may make it difficult to breathe which may result in suffocation. More severe exposure may result in vomiting blood and thick mucus, shock, abnormally low blood pressure, fluctuating pulse, shallow respiration and clammy skin, inflammation of stomach wall, and rupture of esophageal tissue. Untreated shock may eventually result in kidney failure. Severe cases may result in perforation of the stomach and abdominal cavity with consequent infection, rigidity and fever. There may be severe narrowing of the esophageal or pyloric sphincters; this may occur immediately or after a delay of weeks to years. There may be coma and convulsions, followed by death due to infection of the abdominal cavity, kidneys or lungs.
- Irritation of the eyes may produce a heavy secretion of tears (lachrymation).
- The material can produce severe chemical burns to the eye following direct contact. Vapors or mists may be extremely irritating.
- If applied to the eyes, this material causes severe eye damage.
- Direct eye contact with acid corrosives may produce pain, tears, sensitivity to light and burns. Mild burns of the epithelia generally recover rapidly and completely. Severe burns produce long-lasting and possibly irreversible damage. The appearance of the burn may not be apparent for several weeks after the initial contact. The cornea may ultimately become deeply opaque resulting in blindness.
- Irritation of the eyes may produce a heavy secretion of tears (lachrymation).

SKIN
- The material can produce severe chemical burns following direct contact with the skin.
- Skin contact with acidic corrosives may result in pain and burns; these may be deep with distinct edges and may heal slowly with the formation of scar tissue.
- Skin contact is not thought to produce harmful health effects (as classified using animal models). Systemic harm, however, has been identified following exposure of animals by at least one other route and the material may still produce health damage following entry through wounds, lesions or abrasions. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
- Solution of material in moisture on the skin, or perspiration, may markedly increase skin corrosion and accelerate tissue destruction.

INHALED
- The material can cause respiratory irritation in some persons. The body’s response to such irritation can cause further lung damage.
- Corrosive acids can cause irritation of the respiratory tract, with coughing, choking and mucous membrane damage. There may be dizziness, headache, nausea and weakness. Swelling of the lungs can occur, either immediately or after a delay; symptoms of this include chest tightness, shortness of breath, frothy phlegm and cyanosis. Lack of oxygen can cause death hours after onset.
- Inhalation of quantities of liquid mist may be extremely hazardous, even lethal due to spasm, extreme irritation of larynx and bronchi, chemical pneumonitis and pulmonary edema.
- The vapor/mist may be highly irritating to the upper respiratory tract and lungs; the response may be severe enough to produce bronchitis and pulmonary edema. Possible neurological symptoms arising from isocyanate exposure include headache, insomnia, euphoria, ataxia, anxiety neurosis, depression and paranoia. Gastrointestinal disturbances are characterized by nausea and vomiting. Pulmonary sensitization may produce asthmatic reactions ranging from minor breathing difficulties to severe allergic attacks; this may occur following a single acute exposure or may develop without warning for several hours after exposure. Sensitized people can react to very low doses, and should not be allowed to work in situations allowing exposure to this material. Continued exposure of sensitized persons may lead to possible long term respiratory impairment. Inhalation hazard is increased at higher temperatures.
CHRONIC HEALTH EFFECTS

Repeated or prolonged exposure to acids may result in the erosion of teeth, swelling and or ulceration of mouth lining. Irritation of airways to lung, with cough, and inflammation of lung tissue often occurs. Chronic exposure may inflame the skin or conjunctiva.

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Inhaling this product is more likely to cause a sensitization reaction in some persons compared to the general population. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

There is limited evidence that, skin contact with this product is more likely to cause a sensitization reaction in some persons compared to the general population.

Persons with a history of asthma or other respiratory problems or are known to be sensitised, should not be engaged in any work involving the handling of isocyanates. [CCTRADE-Bayer, APMF].

Isocyanate vapors are irritating to the airways and can cause their inflammation, with wheezing, gasping, severe distress, even loss of consciousness and fluid in the lungs. Nervous system symptoms that may occur include headache, sleep disturbance, euphoria, inco-ordination, anxiety, depression and paranoia. Digestive effects include nausea and vomiting. Breathing difficulties may occur unpredictably after a period of tolerance and after skin contact. Allergic inflammation of the skin can occur, with rash, itching, blistering, and swelling of the hands and feet. Sensitive people can react to very low levels and should not be exposed to this material.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>chlorosulfonyl isocyanate</td>
<td>1189-71-5</td>
<td>>98</td>
</tr>
</tbody>
</table>

Section 4 - FIRST AID MEASURES

SWALLOWED

- For advice, contact a Poisons Information Center or a doctor at once.
- Urgent hospital treatment is likely to be needed.
- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Transport to hospital or doctor without delay.

EYE

- If this product comes in contact with the eyes:
 - Immediately hold eyelids apart and flush the eye continuously with running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes.
 - Transport to hospital or doctor without delay.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin or hair contact occurs:
 - Immediately flush body and clothes with large amounts of water, using safety shower if available.
 - Quickly remove all contaminated clothing, including footwear.
 - Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Center.
 - Transport to hospital, or doctor.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

Inhalation of vapors or aerosols (mists, fumes) may cause lung edema. Corrosive substances may cause lung damage (e.g. lung edema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorized by him/her. (ICSC13719).
NOTES TO PHYSICIAN
■ For acute or short term repeated exposures to strong acids:
 • Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially.
 • Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling
 • Intravenous lines should be established immediately in all cases where there is evidence of circulatory compromise.
 • Strong acids produce a coagulation necrosis characterized by formation of a coagulum (eschar) as a result of the dessicating action of the acid on proteins in specific tissues.

INGESTION:
■ Immediate dilution (milk or water) within 30 minutes post ingestion is recommended.
■ DO NOT attempt to neutralize the acid since exothermic reaction may extend the corrosive injury.
■ Be careful to avoid further vomit since re-exposure of the mucosa to the acid is harmful. Limit fluids to one or two glasses in an adult.
■ Charcoal has no place in acid management.
■ Some authors suggest the use of lavage within 1 hour of ingestion.

SKIN:
■ Skin lesions require copious saline irrigation. Treat chemical burns as thermal burns with non-adherent gauze and wrapping.
■ Deep second-degree burns may benefit from topical silver sulfadiazine.

EYE:
■ Eye injuries require retraction of the eyelids to ensure thorough irrigation of the conjunctival cul-de-sacs. Irrigation should last at least 20-30 minutes. DO NOT use neutralizing agents or any other additives. Several liters of saline are required.
■ Cycloplegic drops, (1% cyclopentolate for short-term use or 5% homatropine for longer term use) antibiotic drops, vasoconstrictive agents or artificial tears may be indicated dependent on the severity of the injury.
■ Steroid eye drops should only be administered with the approval of a consulting ophthalmologist.

For sub-chronic and chronic exposures to isocyanates:
■ This material may be a potent pulmonary sensitizer which causes bronchospasm even in patients without prior airway hyperreactivity.
■ Clinical symptoms of exposure involve mucosal irritation of respiratory and gastrointestinal tracts.
■ Conjunctival irritation, skin inflammation (erythema, pain vesiculation) and gastrointestinal disturbances occur soon after exposure.
■ Pulmonary symptoms include cough, burning, substernal pain and dyspnea.
■ Some cross-sensitivity occurs between different isocyanates.
■ Noncardiogenic pulmonary edema and bronchospasm are the most serious consequences of exposure. Markedly symptomatic patients should receive oxygen, ventilatory support and an intravenous line.
■ Treatment for asthma includes inhaled sympathomimetics (epinephrine [adrenalin], terbutaline) and steroids.
■ Activated charcoal (1 g/kg) and a cathartic (sorbitol, magnesium citrate) may be useful for ingestion.
■ Hydriatics, systemic analgesics and topical antibiotics (Sulamyd) may be used for corneal abrasions.
■ There is no effective therapy for sensitized workers. [Ellenhorn and Barceloux: Medical Toxicology]

NOTE: Isocyanates cause airway restriction in naive individuals with the degree of response dependent on the concentration and duration of exposure. They induce smooth muscle contraction which lead to bronchoconstrictive episodes. Acute changes in lung function, such as decreased FEV1, may not represent sensitivity. [Karol Jin, Frontiers in Molecular Toxicology, pp 56-61, 1992].

Section 5 - FIRE FIGHTING MEASURES

<table>
<thead>
<tr>
<th>Vapour Pressure (mmHg)</th>
<th>Not available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>1.626</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
</tr>
</tbody>
</table>

EXTINGUISHING MEDIA
■ Small quantities of water in contact with hot liquid may react violently with generation of a large volume of rapidly expanding hot sticky semi-solid foam.
■ Presents additional hazard when fire fighting in a confined space.
■ Cooling with flooding quantities of water reduces this risk.
■ Water spray or fog may cause frothing and should be used in large quantities.
■ Foam.
■ Dry chemical powder.
■ BCF (where regulations permit).
■ Carbon dioxide.
■ Water spray or fog - Large fires only.

FIRE FIGHTING
■ Alert Emergency Responders and tell them location and nature of hazard.
■ Wear full body protective clothing with breathing apparatus.
■ Prevent, by any means available, spillage from entering drains or water course.
■ Use fire fighting procedures suitable for surrounding area.
DO NOT approach containers suspected to be hot.

Cool fire exposed containers with water spray from a protected location.

If safe to do so, remove containers from path of fire.

Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible.
- Moderate fire hazard when exposed to heat or flame.
- When heated to high temperatures decomposes rapidly generating vapor which pressures and may then rupture containers with release of flammable and highly toxic isocyanate vapor.
- Burns with acrid black smoke and poisonous fumes.
- Combustion yields traces of highly toxic hydrogen cyanide HCN, plus toxic nitrogen oxides NOx and carbon monoxide. Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), isocyanates, and minor amounts of, hydrogen cyanide, hydrogen chloride, phosgene, nitrogen oxides (NOx), sulfur oxides (SOx), other pyrolysis products typical of burning organic material. When heated at high temperatures many isocyanates decompose rapidly generating a vapour which pressurises containers, possibly to the point of rupture. Release of toxic and/or flammable isocyanate vapours may then occur.

FIRE INCOMPATIBILITY
- Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:
Safety Glasses.
Full face- shield.
Gloves:
Respirator:
Powered Respirator.
Acid vapor Type B cartridge/ canister.

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Clean up all spills immediately.
- Avoid breathing vapors and contact with skin and eyes.
- Control personal contact by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- Place in a suitable labeled container for waste disposal.

MAJOR SPILLS

- Chemical Class:acidic compounds, organic

For release onto land: recommended sorbents listed in order of priority.

<table>
<thead>
<tr>
<th>SORBENT TYPE</th>
<th>RANK</th>
<th>APPLICATION</th>
<th>COLLECTION</th>
<th>LIMITATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND SPILL - SMALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wood fiber - pillow</td>
<td>1</td>
<td>throw</td>
<td>pitchfork</td>
<td>R, P, DGC, RT</td>
</tr>
<tr>
<td>cross-linked polymer - particulate</td>
<td>1</td>
<td>shovel</td>
<td>shovel</td>
<td>R,W,SS</td>
</tr>
<tr>
<td>cross-linked polymer - pillow</td>
<td>1</td>
<td>throw</td>
<td>pitchfork</td>
<td>R, DGC, RT</td>
</tr>
<tr>
<td>sorbent clay - particulate</td>
<td>2</td>
<td>shovel</td>
<td>shovel</td>
<td>R, I, P</td>
</tr>
<tr>
<td>foamed glass - pillow</td>
<td>2</td>
<td>throw</td>
<td>pitchfork</td>
<td>R, P, DGC, RT</td>
</tr>
<tr>
<td>wood fiber - particulate</td>
<td>3</td>
<td>shovel</td>
<td>shovel</td>
<td>R, W, P, DGC</td>
</tr>
<tr>
<td>LAND SPILL - MEDIUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cross-linked polymer - particulate</td>
<td>1</td>
<td>throw</td>
<td>skiploader</td>
<td>R, W, SS</td>
</tr>
<tr>
<td>polypropylene - particulate</td>
<td>2</td>
<td>throw</td>
<td>skiploader</td>
<td>W, SS, DGC</td>
</tr>
<tr>
<td>sorbent clay - particulate</td>
<td>2</td>
<td>throw</td>
<td>skiploader</td>
<td>R, I, P</td>
</tr>
<tr>
<td>cross-linked polymer - pillow</td>
<td>3</td>
<td>throw</td>
<td>skiploader</td>
<td>R, DGC, RT</td>
</tr>
<tr>
<td>polypropylene - mat</td>
<td>3</td>
<td>throw</td>
<td>skiploader</td>
<td>W, SS, DGC</td>
</tr>
<tr>
<td>expanded mineral - particulate</td>
<td>3</td>
<td>throw</td>
<td>skiploader</td>
<td>R, I, W, P, DGC</td>
</tr>
</tbody>
</table>

Legend
DGC: Not effective where ground cover is dense
R: Not reusable
I: Not incinerable
P: Effectiveness reduced when rainy

5 of 13
RT: Not effective where terrain is rugged
SS: Not for use within environmentally sensitive sites
W: Effectiveness reduced when windy

- Liquid isocyanates and high isocyanate vapour concentrations will penetrate seals on self contained breathing apparatus - SCBA should be used inside encapsulating suit where this exposure may occur.
- Treat isocyanate spills with sufficient amounts of isocyanate decontaminant preparation.
- Typically, such a preparation may consist of: sawdust: 20 parts by weight, Kieselguhr 40 parts by weight plus a mixture of (ammonia (s.g. 0.880) 8% v/v non-ionic surfactant 2% v/v water 90% v/v).
- Let stand for 24 hours.
- Avoid contamination with water, alkalis and detergent solutions.
- Material reacts with water and generates gas, pressurizes containers with even drum rupture resulting.
- DO NOT reseal container if contamination is suspected.
- Open all containers with care.
- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation.
- Stop leak if safe to do so.
- Collect spill with sand, earth or vermiculite.
- Collect recoverable product into labeled containers for recycling.
- Neutralize/decontaminate residue.
- Collect solid residues and seal in labeled drums for disposal.
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

INITIAL ISOLATION ZONE

- Isolation Distance
- Wind direction
- Wind distance
- FROM IERG (Canada/Australia)
 - Isolation Distance 25 meters
 - Downwind Protection Distance 250 meters

PROTECTIVE ACTION ZONE

- Evacuation direction
- Half downwind distance

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.

6 IERG information is derived from CANUTECH - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory
effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- DO NOT allow clothing wet with material to stay in contact with skin
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- WARNING: To avoid violent reaction, ALWAYS add material to water and NEVER water to material.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer’s storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

RECOMMENDED STORAGE METHODS

- DO NOT use aluminum or galvanized containers.
- Check regularly for spills and leaks.
- Lined metal can, Lined metal pail/drum
- Plastic pail
- Polyliner drum
- Packing as recommended by manufacturer.
- Check all containers are clearly labeled and free from leaks.

For low viscosity materials
- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt (23 deg. C) and solids (between 15 C deg. and 40 deg C.):
- Removable head packaging;
- Cans with friction closures and low pressure tubes and cartridges may be used.
- Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting molded plastic box and the substances are not incompatible with the plastic.

STORAGE REQUIREMENTS

- for commercial quantities of isocyanates:
 - Isocyanates should be stored in adequately bunded areas. Nothing else should be kept within the same bunding. Pre-polymers need not be segregated. Drums of isocyanates should be stored under cover, out of direct sunlight, protected from rain, protected from physical damage and well away from moisture, acids and alkalis.
 - Where isocyanates are stored at elevated temperatures to prevent solidifying, adequate controls should be installed to prevent the high temperatures and precautions against fire should be taken.
 - Where stored in tanks, the more reactive isocyanates should be blanketed with a non-reactive gas such as nitrogen and equipped with absorptive type breather valve (to prevent vapour emissions).
 - Transfer systems for isocyanates in bulk storage should be fully enclosed and use pump or vacuum systems. Warning signs, in appropriate languages, should be posted where necessary.
 - Areas in which polyurethane foam products are stored should be supplied with good general ventilation. Residual amounts of unreacted isocyanate may be present in the finished foam, resulting in hazardous atmospheric concentrations.
 - Store in original containers.
 - Keep containers securely sealed.
 - Store in a cool, dry, well-ventilated area.
 - Store away from incompatible materials and foodstuff containers.
● Protect containers against physical damage and check regularly for leaks.
● Observe manufacturer’s storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

<table>
<thead>
<tr>
<th>+</th>
<th>+</th>
<th>+</th>
<th>+</th>
<th>X</th>
<th>+</th>
</tr>
</thead>
</table>

X: Must not be stored together
O: May be stored together with specific preventions
+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records
• chlorosulfonyl isocyanate: CAS:1189-71-5

MATERIAL DATA

CHLOROSULFONYL ISOCYANATE:

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers’ responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:
• cause inflammation
• cause increased susceptibility to other irritants and infectious agents
• lead to permanent injury or dysfunction
• permit greater absorption of hazardous substances and
• acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

Some jurisdictions require that health surveillance be conducted on occupationally exposed workers.
• demography, occupational and medical history and health advice
• completion of a standardized respiratory questionnaire
• physical examination of the respiratory system and skin
• standardized respiratory function tests such as FEV1, FVC and FEV1/FVC

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE
• Chemical goggles.
• Full face shield.
• Contact lenses pose a special hazard; soft contact lenses may absorb irritants and all lenses concentrate them.

HANDS/FEET
• Elbow length PVC gloves.
- When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.

NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
- Do NOT wear natural rubber (latex gloves).
- Isocyanate resistant materials include Teflon, Viton, nitrile rubber and some PVA gloves.
- Protective gloves and overalls should be worn as specified in the appropriate national standard.
- Contaminated garments should be removed promptly and should not be re-used until they have been decontaminated.
- NOTE: Natural rubber, neoprene, PVC can be affected by isocyanates

DO NOT use skin cream unless necessary and then use only minimum amount. Isocyanate vapor may be absorbed into skin cream and this increases hazard.

OTHER
- All employees working with isocyanates must be informed of the hazards from exposure to the contaminant and the precautions necessary to prevent damage to their health. They should be made aware of the need to carry out their work so that as little contamination as possible is produced, and of the importance of the proper use of all safeguards against exposure to themselves and their fellow workers. Adequate training, both in the proper execution of the task and in the use of all associated engineering controls, as well as of any personal protective equipment, is essential.

Employees exposed to contamination hazards should be educated in the need for, and proper use of, facilities, clothing and equipment and thereby maintain a high standard of personal cleanliness. Special attention should be given to ensuring that all personnel understand instructions, especially newly recruited employees and those with local-language difficulties, where they are known.

- Overalls.
- PVC Apron.
- PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Ensure there is ready access to a safety shower.

RESPIRATOR

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

- All processes in which isocyanates are used should be enclosed wherever possible.
- Total enclosure, accompanied by good general ventilation, should be used to keep atmospheric concentrations below the relevant exposure standards.
- If total enclosure of the process is not feasible, local exhaust ventilation may be necessary. Local exhaust ventilation is essential where lower molecular weight isocyanates (such as TDI or HDI) is used or where isocyanate or polyurethane is sprayed.
- Where other isocyanates or pre-polymers are used and aerosol formation cannot occur, local exhaust ventilation may not be necessary if the atmospheric concentration can be kept below the relevant exposure standards.
- Where local exhaust ventilation is installed, exhaust vapours should not be vented to the exterior in such a manner as to create a hazard.

Spraying of material or material in admixture with other components must be carried out in conditions conforming to local state regulations. Local exhaust ventilation with full face air supplied breathing apparatus (hood or helmet type) is normally required. Unprotected personnel must vacate spraying area.

NOTE: Isocyanate vapors will not be adequately absorbed by organic vapor respirators. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

<table>
<thead>
<tr>
<th>Type of Contaminant:</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>1-2.5 m/s (200-500 f/min.)</td>
</tr>
</tbody>
</table>
Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min.) for extraction of solvents generated by spraying at a point 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

<table>
<thead>
<tr>
<th>Section 9 - PHYSICAL AND CHEMICAL PROPERTIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICAL PROPERTIES</td>
</tr>
<tr>
<td>Corrosive.</td>
</tr>
<tr>
<td>Acid.</td>
</tr>
<tr>
<td>Reacts violently with water.</td>
</tr>
<tr>
<td>State</td>
</tr>
<tr>
<td>Melting Range (°F)</td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
</tr>
<tr>
<td>Flash Point (°F)</td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APPEARANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colourless liquid; reacts with water.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 10 - CHEMICAL STABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONDITIONS CONTRIBUTING TO INSTABILITY</td>
</tr>
<tr>
<td>Contact with alkaline material liberates heat</td>
</tr>
<tr>
<td>Presence of incompatible materials.</td>
</tr>
<tr>
<td>Product is considered stable.</td>
</tr>
<tr>
<td>Hazardous polymerization will not occur.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STORAGE INCOMPATIBILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acyl halides tend to react violently with protic organic solvents, water, and the aprotic solvents, dimethylformamide and dimethyl sulfoxide. Their facile reaction with ethers is also potentially dangerous. In the absence of diluent or other effective control of reaction rate, sulfoxides may react violently or explosively with certain acyl halides. These violent reactions may be explained in terms of exothermic polymerization of formaldehyde which is formed under a variety of conditions by interaction of the sulfoxide with reactive halides. BREHERICK L.: Handbook of Reactive Chemical Hazards.</td>
</tr>
<tr>
<td>Reacts with mild steel, galvanized steel / zinc producing hydrogen gas which may form an explosive mixture with air.</td>
</tr>
<tr>
<td>A range of exothermic decomposition energies for isocyanates is given as 20-30 kJ/mol.</td>
</tr>
<tr>
<td>The relationship between energy of decomposition and processing hazards has been the subject of discussion; it is suggested that values of energy released per unit of mass, rather than on a molar basis (J/g) be used in the assessment.</td>
</tr>
<tr>
<td>For example, in "open vessel processes" (with man-hole size openings, in an industrial setting), substances with exothermic decomposition energies below 500 J/g are unlikely to present a danger, whilst those in "closed vessel processes" (opening is a safety valve or bursting disk) present some danger where the decomposition energy exceeds 150 J/g. BRETERICK: Handbook of Reactive Chemical Hazards, 4th Edition.</td>
</tr>
<tr>
<td>Avoid strong bases. Segregate from alkalis, oxidizing agents and chemicals readily decomposed by acids, i.e. cyanides, sulfides, carbonates.</td>
</tr>
<tr>
<td>Avoid reaction with water, alcohols and detergent solutions.</td>
</tr>
<tr>
<td>Isocyanates and thiocyanates are incompatible with many classes of compounds, reacting exothermically to release toxic gases.</td>
</tr>
<tr>
<td>Reactions with amines, strong bases, aldehydes, alcohols, alkali metals, ketones, mercaptans, strong oxidisers, hydrides, phenols, and peroxides can cause vigorous releases of heat. Acids and bases initiate polymerisation reactions in these materials.</td>
</tr>
</tbody>
</table>
Aerobic and/or anaerobic biodegradation of the isocyanates is not expected to occur at significant levels. But hydrolysis should be considered one of the two major fate processes for the isocyanates. Hydrolysis of the N=C=O will occur in less than hours in most instances and within minutes for more than 90% of the commercial isocyanate monomers, but is tempered somewhat by the lack of water solubility. In the absence of hydrolysis, sorption to solids (e.g., sludge and sediments) will be the primary mechanism of removal. Biodegradation is minimal for most compounds and volatilisation is negligible. Atmospheric degradation is not expected with removal from air occurring by washout or dry deposition. Volatilisation from surface waters (e.g., lakes and rivers) is expected to take years. In wastewater treatment this process is not expected to be significant.

Review of the estimated properties of the isocyanates suggest that sorption is the primary removal mechanism in the ambient environment and in wastewater treatment in the absence of significant hydrolysis. Sorption to solids in wastewater treatment is considered strong to very strong for most compounds. Sorption to sediments and soils in the ambient environment is very strong in most instances. Migration to groundwater and surface waters is not expected due to sorption or hydrolysis. Hydrolysis of the N=C=O will occur in less than hours in most instances and within minutes for more than 90% of the commercial isocyanates. However, the low to very low solubility of these substances will generally lessen the effectiveness of hydrolysis as a fate pathway. But hydrolysis should be considered one of the two major fate processes for the isocyanates.

Aerobic and/or anaerobic biodegradation of the isocyanates is not expected to occur at significant levels. Most of the substances take...
several months to degrade. Degradation of the hydrolysis products will occur at varying rates depending on the moiety formed.
- Prevent, by any means available, spillage from entering drains or watercourses.
- DO NOT discharge into sewer or waterways.

Ecotoxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
<th>Bioaccumulation</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>chlorosulfonyl isocyanate</td>
<td>HIGH</td>
<td>LOW</td>
<td></td>
<td>HIGH</td>
</tr>
</tbody>
</table>

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions

A. General Product Information

Corrosivity characteristic: use EPA hazardous waste number D002 (waste code C)

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

- Puncture containers to prevent re-use and bury at an authorized landfill.
- Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Treat and neutralize at an approved treatment plant. Treatment should involve: Neutralization with soda-ash or soda-lime followed by: Burial in a licensed land-fill or Incineration in a licensed apparatus
- Decontaminate empty containers with 5% aqueous sodium hydroxide or soda ash, followed by water. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

DOT:

<table>
<thead>
<tr>
<th>Symbols:</th>
<th>None</th>
<th>Hazard class or Division:</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification Numbers:</td>
<td>UN3265</td>
<td>PG:</td>
<td>II</td>
</tr>
<tr>
<td>Label Codes:</td>
<td>8</td>
<td>Special provisions:</td>
<td>B2, IB2, T11, TP2, TP27</td>
</tr>
<tr>
<td>Packaging: Exceptions:</td>
<td>154</td>
<td>Packaging: Non-bulk:</td>
<td>202</td>
</tr>
<tr>
<td>Packaging: Exceptions:</td>
<td>154</td>
<td>Quantity limitations: Passenger aircraft/rail:</td>
<td>1 L</td>
</tr>
<tr>
<td>Quantity Limitations: Cargo aircraft only:</td>
<td>30 L</td>
<td>Vessel stowage: Location:</td>
<td>B</td>
</tr>
<tr>
<td>Vessel stowage: Other:</td>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hazardous materials descriptions and proper shipping names:
Corrosive liquid, acidic, organic, n.o.s.

Air Transport IATA:

ICAO/IATA Class:	8	ICAO/IATA Subrisk:	None
UN/ID Number:	3265	Packing Group:	II
Special provisions:	A3		
Shipping Name: CORROSIVE LIQUID, ACIDIC, ORGANIC, N.O.S. *(CONTAINS CHLOROSULFONYL ISOCYANATE)

Maritime Transport IMDG:

<table>
<thead>
<tr>
<th>IMDG Class:</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN Number:</td>
<td>3265</td>
</tr>
<tr>
<td>Packing Group:</td>
<td>II</td>
</tr>
<tr>
<td>EMS Number:</td>
<td>F-A, S-B</td>
</tr>
<tr>
<td>Special provisions:</td>
<td>274</td>
</tr>
</tbody>
</table>

Limited Quantities: 1 L

Shipping Name: CORROSIVE LIQUID, ACIDIC, ORGANIC, N.O.S.(contains chlorosulfonyl isocyanate)

Section 15 - REGULATORY INFORMATION

REGULATIONS

chlorosulfonyl isocyanate (CAS: 1189-71-5) is found on the following regulatory lists;

- "Canada Non-Domestic Substances List (NDSL)"
- "US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Cumulative effects may result following exposure*.
- Possible skin sensitizer*.

* (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Jul-1-2008

Print Date: Sep-11-2010