Diisodecyl phthalate

sc-255101

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Diisodecyl phthalate

STATEMENT OF HAZARDOUS NATURE

NFPA

SUPPLIER
Santa Cruz Biotechnology, Inc.
2145 Delaware Avenue
Santa Cruz, California 95060
800.457.3801 or 831.457.3800

EMERGENCY
ChemWatch
Within the US & Canada: 877-715-9305
Outside the US & Canada: +800 2436 2255
(1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS
C28-H46-O4, "phthalic acid, diisodecyl ester", "bis(isodecyl phthalate)", DIDP, DisoDP, "I, 2 benzenedicarboxylic acid, diisodecyl ester", "I, 2-benzenedicarboxylic acid, di-(C9-C11) branched chain alkyl ester"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

<table>
<thead>
<tr>
<th>Category</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW
RISK
May cause long-term adverse effects in the environment.
Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
- Accidental ingestion of the material may be damaging to the health of the individual.
- The toxicity of phthalates is not excessive due to slow oral absorption and metabolism.
Absorption is affected by fat in the diet.

EYE
- Although the liquid is not thought to be an irritant, direct contact with the eye may produce transient discomfort characterized by tearing or conjunctival redness (as with windburn).

SKIN
- The liquid may be miscible with fats or oils and may degrease the skin, producing a skin reaction described as non-allergic contact dermatitis.
The material is unlikely to produce an irritant dermatitis as described in EC Directives.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects.
Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
- The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified using animal models).
Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
- Inhalation hazard is increased at higher temperatures.
- Not normally a hazard due to non-volatile nature of product.

CHRONIC HEALTH EFFECTS
- There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment.
Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.
Exposure to the material may cause concerns for human fertility, on the basis that similar materials provide some evidence of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which are not a secondary non-specific consequence of other toxic effects.
Exposure to phthalates over years leads to pain, numbness and spasms in the hands and feet. Many people have developed multiple disorders in the nervous system and the balancing system.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>diisodecyl phthalate</td>
<td>26761-40-0</td>
<td>>99</td>
</tr>
</tbody>
</table>

Section 4 - FIRST AID MEASURES

SWALLOWED
- If swallowed do NOT induce vomiting. · If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

EYE
- If this product comes in contact with the eyes: · Wash out immediately with fresh running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN
- If skin or hair contact occurs: · Flush skin and hair with running water (and soap if available). · Seek medical attention in event of irritation.

INHALED
- If fumes or combustion products are inhaled remove from contaminated area. · Other measures are usually unnecessary.

NOTES TO PHYSICIAN
- Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES

<table>
<thead>
<tr>
<th>Vapor Pressure (mmHg):</th>
<th>0.345 @ 200C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available.</td>
</tr>
<tr>
<td>Specific Gravity (water=1):</td>
<td>0.962-0.978 @25C</td>
</tr>
</tbody>
</table>
Lower Explosive Limit (%): Not available.

EXTINGUISHING MEDIA
- Foam.
- Dry chemical powder.

FIRE FIGHTING
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.

When any large container (including road and rail tankers) is involved in a fire, consider evacuation by 100 metres in all directions.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
- Combustible.
- Slight fire hazard when exposed to heat or flame.

Combustion products include: carbon dioxide (CO2), other pyrolysis products typical of burning organic material. May emit clouds of acrid smoke.

FIRE INCOMPATIBILITY
- Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:
- Chemical goggles.

Gloves:

Respirator:
- Type A-P Filter of sufficient capacity

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
- Environmental hazard - contain spillage.
- Slippery when spilt.
- Clean up all spills immediately.
- Avoid breathing vapors and contact with skin and eyes.

MAJOR SPILLS
- Environmental hazard - contain spillage.
- Slippery when spilt.
- Moderate hazard.
- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.

RECOMMENDED STORAGE METHODS
- Metal can or drum
- Packing as recommended by manufacturer.

STORAGE REQUIREMENTS
- Store in original containers.
- Keep containers securely sealed.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Peak ppm</th>
<th>Peak mg/m³</th>
<th>TWA F/CC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada - Ontario Occupational Exposure Limits</td>
<td>diisodecyl phthalate (Diisodecyl phthalate / Phthalate de disodécyle)</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENDOELTABLE

PERSONAL PROTECTION
RESPIRATOR
- type a-p filter of sufficient capacity.
Consult your EHS staff for recommendations

EYE
- Safety glasses with side shields
- Chemical goggles.

HANDS/FEET
Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity
Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.
Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
- Wear chemical protective gloves, eg. PVC.

OTHER
- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

ENGINEERING CONTROLS
General exhaust is adequate under normal operating conditions. If risk of overexposure exists, wear an approved respirator.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES
Liquid.
Does not mix with water.
Floats on water.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Liquid</td>
</tr>
<tr>
<td>Molecular Weight</td>
<td>446.74</td>
</tr>
<tr>
<td>Melting Range (°F)</td>
<td>-54</td>
</tr>
<tr>
<td>Viscosity</td>
<td>Not Available</td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>>601</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>Immiscible</td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>435(PMCC)</td>
</tr>
<tr>
<td>pH (1% solution)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>Not available.</td>
</tr>
<tr>
<td>Vapor Pressure (mmHg)</td>
<td>0.345 @ 200°C</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available.</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>0.962-0.978 @25°C</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available.</td>
</tr>
<tr>
<td>Relative Vapor Density (air=1)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Non Volatile</td>
</tr>
<tr>
<td>Evaporation Rate</td>
<td><0.05 BuAc=1</td>
</tr>
</tbody>
</table>

APPEARANCE
Clear slightly viscous liquid with a mild odour; does not mix with water. Soluble in most solvents. Viscosity @ 20 deg. C: 129.00 cSt.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY
- Presence of incompatible materials.
- Product is considered stable.

STORAGE INCOMPATIBILITY
- Phthalates:
The available data on phthalates spanning the carbon range from C8-C13 indicate that excreted primarily in the urine. Studies on HMWPEs indicate that they are rapidly metabolised in the gastrointestinal tract to the core molecules diminishes with increasing molecular weight. The high molecular weight phthalates all demonstrate minimal acute toxicity, are not genotoxic, exhibit properties or display an expected trend. Thus, read-across for toxicity endpoints is an appropriate approach. Due to their similar chemical structure, category members are generally similar with respect to physiological, biochemical, biological and toxicological interactions with both oestrogen and androgen action. The experimental results indicate that only selected phthalates esters exhibit weak oestrogenic and androgen-mediated activity at high concentrations in some in vitro assays (IPCS, 2002). No overt effect related to endocrine disruption of the reproductive system was observed in any of the studies considered in the EU report on DIDP. Carcinogenicity: No carcinogenicity long term study is available for DIDP, but an increase in incidence of hepatocellular tumours in rats related to peroxisome proliferation might be anticipated. An increased incidence in tumour liver cells was observed in rats treated with DEHP and di-isononyl phthalate (DINP). However, the carcinogenic effects of peroxisome proliferators are generally considered to be specific to rodent species, while humans are essentially non-responsive or refractory. High Molecular Weight Phthalate Esters (HMWPEs) Category as defined by the Phthalate Esters Panel HPV Testing Group (2001) and OECD (2004). The HMWPE group includes chemically similar substances produced from alcohols having backbone carbon lengths of >= 7. Due to their similar chemical structure, category members are generally similar with respect to physicochemical, biological and toxicological properties or display an expected trend. Thus, read-across for toxicity endpoints is an appropriate approach to characterise selected endpoints for members of this category. In some cases the substances have ester side group constituents that span two subcategories (i.e., transitional and high molecular weight constituents). If the level of C4 to C6 constituents in the substance exceeded 10%, the substance was conservatively placed in the transitional subcategory. High molecular weight phthalates are used nearly exclusively as plasticisers of PVC. They are very poorly soluble in water, and have very low vapor pressure. The extant database demonstrates that these substances have few biological effects. A notable exception to this generalisation is that hepatocarcinogenicity has been observed for diisononyl phthalate (DINP). The hepatocarcinogenicity effects of DINP are by a mechanism (peroxisomal proliferation) to which rodents are particularly sensitive. However, it does not appear to be relevant to humans. The high molecular weight phthalates all demonstrate minimal acute toxicity, are not genotoxic, exhibit some liver and kidney effects at high doses, and are negative for reproductive and developmental effects. Further, the available data indicate that the toxicological activity of these molecules diminishes with increasing molecular weight. Studies on HMWPEs indicate that they are rapidly metabolised in the gastrointestinal tract to the corresponding monoester, absorbed and excreted primarily in the urine. Acute toxicity: The available data on phthalates spanning the carbon range from C8-C13 indicate that phthalate esters in the high molecular

Section 11 - TOXICOLOGICAL INFORMATION

DIISODECYL PHthalate

TOXICITY AND IRRITATION

DIISODECYL PHthalate

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (rat) LD50: 64000 mg/kg</td>
<td>Nil Reported</td>
</tr>
<tr>
<td>for bis[2-propylyhepto]phthalate</td>
<td></td>
</tr>
</tbody>
</table>

A substance thought to be comparable to bis(2-propylyhepto)phthalate is diisodecyl phthalate (syn: DIDP) and the toxicological profile of phthalate esters in the high molecular weight range is generally considered to be specific to rodent species, while humans are essentially non-responsive or refractory. Here, the NOAELs derived are due to the latter, which is considered to be species-specific and of little relevance to humans, the NOAEL of 15 mg/kg/day from a 90-day dog study was used in the EU risk assessment. However, this study was considered to be of poor reliability. In the DIDP dietary study provided to NICNAS for assessment, the NOAEL was 39 mg/kg/day, based on liver effects and hypertrophy of the follicular epithelium of the thyroid glands. The effects observed in the repeated dose toxicity tests do not justify classification with R48 according to the Approved criteria. Developmental toxicity: An EU report concluded that DIDP was a developmental toxicant, based on a decrease in survival indices in two-generation studies; a NOAEL of 0.06% (33 mg/kg/day) was used in the risk assessment. Developmental toxicity: For developmental effects, NOAELs of 500 mg/kg/day, for skeletal variations, and 253 mg/kg/day, for body weight decrease in offspring, were used in the risk assessment. No fertility effects were observed in any studies. Overall, the effects observed were not severe enough to warrant classification against the EU criteria. Based on the absence of statistically significant effects in dams, the No Observed Adverse Effect Level (NOAEL) for maternal toxicity was established as 1000 mg/kg bw/day in this screening study. Based on the statistically significant and dose-related incidence of skeletal variations in foetuses, the NOAEL for developmental toxicity is 400 mg/kg bw/day. An expert panel of the US National Toxicology Program (NTP) concluded that there was sufficient evidence from the toxicology database to determine that DIDP can cause foetotoxicity after oral exposure. The NOAEL for developmental toxicity in the two prenatal developmental studies in rats was 40-100 mg/kg/day based on the effects on the developing skeletal system. In the two oral two-generation reproductive toxicity studies in rats, adverse effects on pup survival and growth were observed, the NOAELs being 38-44 mg/kg/day during pregnancy and 6-9 mg/kg/day during lactation. However, the reproductive studies showed that DIDP had no effect on reproductive structure or function, and the top doses, 427-929 mg/kg/day for males and 508-987 mg/kg/day for females, were selected as the NOAELs. The developmental effects of several phthalates are exerted via alternations in testosterone-synthesising ability of the foetal testes. The mode of action of the testicular toxicity is via the monoester with the target cell in the testis being the Sertoli cell, although the precise biochemical interaction has yet to be identified. Attention has also been focused on the endocrine-active effects of phthalates including interactions with both oestrogen and androgen action. The experimental results indicate that only selected phthalates esters exhibit weak oestrogenic and androgen-mediated activity at high concentrations in some in vitro assays (IPCS, 2002). NO overt effect related to endocrine disruption of the reproductive system was observed in any of the studies considered in the EU report on DIDP. Genotoxicity: DIDP is not mutagenic in vitro in bacterial mutation assays with and without metabolic activation, and is negative in a mouse lymphoma assay. It is not clastogenic in a mouse micronucleus assay in vivo either. DIDP is not genotoxic. Carcinogenicity: No carcinogenicity long term study is available for DIDP, but an increase in incidence of hepatocellular tumours in rats related to peroxisome proliferation might be anticipated. An increased incidence in tumour liver cells was observed in rats treated with DEHP and di-isononyl phthalate (DINP). However, the carcinogenic effects of peroxisome proliferators are generally considered to be specific to rodent species, while humans are essentially non-responsive or refractory. High Molecular Weight Phthalate Esters (HMWPEs) Category as defined by the Phthalate Esters Panel HPV Testing Group (2001) and OECD (2004). The HMWPE group includes chemically similar substances produced from alcohols having backbone carbon lengths of >= 7. Due to their similar chemical structure, category members are generally similar with respect to physicochemical, biological and toxicological properties or display an expected trend. Thus, read-across for toxicity endpoints is an appropriate approach to characterise selected endpoints for members of this category. In some cases the substances have ester side group constituents that span two subcategories (i.e., transitional and high molecular weight constituents). If the level of C4 to C6 constituents in the substance exceeded 10%, the substance was conservatively placed in the transitional subcategory. High molecular weight phthalates are used nearly exclusively as plasticisers of PVC. They are very poorly soluble in water, and have very low vapor pressure. The extant database demonstrates that these substances have few biological effects. A notable exception to this generalisation is that hepatocarcinogenicity has been observed for diisononyl phthalate (DINP). The hepatocarcinogenicity effects of DINP are by a mechanism (peroxisomal proliferation) to which rodents are particularly sensitive. However, it does not appear to be relevant to humans. The high molecular weight phthalates all demonstrate minimal acute toxicity, are not genotoxic, exhibit some liver and kidney effects at high doses, and are negative for reproductive and developmental effects. Further, the available data indicate that the toxicological activity of these molecules diminishes with increasing molecular weight. Studies on HMWPEs indicate that they are rapidly metabolised in the gastrointestinal tract to the corresponding monoester, absorbed and excreted primarily in the urine. Acute toxicity: The available data on phthalates spanning the carbon range from C8-C13 indicate that phthalate esters in the high molecular...
weight subcategory are not toxic by acute oral and dermal administration; LD50 values of all substances tested exceed the maximum amounts which can be administered to the animals. There are fewer data available on inhalation toxicity; only di-iso-octyl phthalate (DINP) and di-iso-decyl phthalate (DIDP) have been tested. However, the phthalates in this subcategory have extremely low vapor pressures, and exposure by inhalation at potentially hazardous levels is not anticipated.

Repeat dose toxicity. Several substances ranging from C8-C11 have been tested for repeated dose toxicity in studies ranging from 21 days to two years. Ditridecyl phthalate (CAS 119-06-2) has been studied by the Japan Ministry of Health and Welfare (unpublished report) and data for this substance is used as read-across data for DTDP*. In addition results from repeat dose studies examining DINP (CAS 685 15-48-0) and DIDP (CAS 68515-49-1) are used as read across for the di C9-C11 phthalates (CAS 68515-43-5). The principal effects found are those associated with peroxisomal proliferation, including liver enlargement and induction of peroxisomal enzymes. As shown for developmental toxicity: Developmental toxicity tests in liver effects, the strongest inducers of peroxisomal proliferation were DEHP, DINP, and DIDP with substances of shorter and longer ester side chains (e.g., 610P*, 711P*, and diundecyl phthalate - DUP) showing less pronounced effects. Thus, it is reasonable to conclude that other members of this subcategory would show effects similar to but not more pronounced than those associated with DINP and DIDP. It should also be noted that the relevance of these findings to human health is, at best, questionable. It has been shown that these effects are mediated through the peroxisome proliferation-activated receptor alpha (PPARα), and that levels of PPARα are much higher in rodents than humans. Thus, one would expect humans to be substantially less responsive than rodents to peroxisome proliferating agents. Empirical evidence supporting this postulation is provided by studies in primates in which repeated administration of DEHP and DINP had no effects on liver, kidney or testicular parameters.

In this regard it should also be noted that kidney enlargement is also commonly observed but normally without any pathological changes. There is a component of the kidney changes which is also PPARα-related. It has also been shown that in male rats, DINP induces an alpha 2u-globulin nephropathy which is male rat-specific but without relevance to humans. Thus, as was true for the liver changes, the relevance of the kidney changes to human health is also questionable.

Finally, some of the lower molecular weight phthalates can induce testicular atrophy when administered to juvenile rats at high levels. However, the higher molecular weight phthalates including di-n-octyl phthalate (DnOP), DINP, DIDP, 610P, and 711P do not induce testicular atrophy. Further, the tests is not a target organ for DINP in either marmosets or cynomolgus monkeys. Thus, testicular atrophy is not an end point in this subcategory.

Reproductive toxicity: Reproductive toxicity tests in rats have been carried out with DINP, DIDP a linear C7-C9 phthalate (CAS 68515-41-3), a linear C9-C11 phthalate, and ditridecyl phthalate (Japan Ministry of Health and Welfare, unpublished report). None of these affected fertility or profoundly affected male reproductive development. A slight decrease in offspring viability was reported for both DIDP and ditridecyl phthalate at levels associated with maternal effects. DnOP was tested for effects on fertility in a continuous breeding protocol in mice, and, like the other members of this subcategory, did not reduce fertility. Thus, it can be concluded that the subcategory of high molecular weight phthalates do not affect fertility.

Developmental toxicity: Developmental toxicity tests in rats have been carried out with DINP, DIDP: C7-9 phthalate (CAS 68515-41-3); C9-11 phthalate (CAS 68515-43-5); and ditridecyl phthalate (CAS 119-06-2). None of the substances tested affected litter size, foetal survival or bodyweight, and none produced teratogenic effects. Increased frequencies of developmental variants including dilated renal pelvis, and supernumerary lumbar and cervical ribs were found at levels associated with maternal effects. The toxicological significance of these developmental variants is unclear. DnOP was not teratogenic in mice when tested at very high levels. Thus, it can be concluded that this subcategory of high molecular weight phthalates do not produce profound developmental effects in rodents.

Genotoxicity: The majority of the substances in this subcategory of high molecular weight phthalates have been tested for genetic activity in the Salmonella assay, and all were inactive. One large program covering many of these substances was carried out by the National Institute of Environmental Health Sciences. Similarly, a range of substances covering the majority of the carbon numbers in this subcategory were found to be inactive in mouse lymphoma tests.

Chromosomal Aberrations. Two representative members of the subcategory of high molecular weight phthalates (DINP and DIDP) have been tested for chromosomal mutation in the mouse micronucleus test, and both were inactive. Ditridecyl phthalate (CAS 119-06-2) induced neither structural chromosomal aberrations nor polyploidy in CHL cells up to the limit concentration of 4.75 mg/ml, in the absence or presence of an exogenous metabolic activation system (Japan Ministry of Health and Welfare, unpublished report). Further, all of the low molecular weight and transitional phthalates that have been tested were inactive.

*610P - mixed decyl, hexyl and octyl esters (CAS Rn: 68648-93-1)
*711P - C7,C11, branched and linear esters (CAS Rn: 111381-90-9)
* DTPD - di-C11-14, C13 rich ester (CAS 68515-47-9).

The material may produce peroxisome proliferation. Peroxisomes are single, membrane limited, cytoplasmic organelles that are found in the cells of animals, plants, fungi and protozoa. Peroxisomes proliferators include certain hypolipidaemic drugs, phthalate ester plasticisers, industrial solvents, herbicides, food flavours, leuoketirole D4 antagonists and hormones. Numerous studies in rats and mice have demonstrated the hepatocarcinogenic effects of peroxisome proliferators, and these compounds have been unequivocally established as carcinogens. However it is generally conceded that compounds inducing proliferation in rats and mice have little, if any, effect on human liver except at very high doses or extreme conditions of exposure.

CARCINOGEN

May cause long-term adverse effects in the environment.

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

This material and its container must be disposed of as hazardous waste.

Avoid release to the environment.

Refer to special instructions/safety data sheets.

<table>
<thead>
<tr>
<th>Ecotoxicity</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
<th>Bioaccumulation</th>
<th>Mobility</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingredient</td>
<td>HIGH</td>
<td>No Data Available</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
</tr>
</tbody>
</table>

GESAMP/EHS COMPOSITE LIST - GESAMP Hazard Profiles
Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

Recycle wherever possible or consult manufacturer for recycling options.

Consult Waste Management Authority for disposal.

Section 14 - TRANSPORTATION INFORMATION

DOT:
Symbols: G Hazard class or Division: 9
Identification Numbers: UN3082 PG: III
Label Codes: 9 Special provisions: 8, 146, 335, IB3, T4, TP1, TP29
Packaging: Exceptions: 155 Packaging: Non- bulk: 203
Packaging: Exceptions: 155 Quantity limitations: No limit
Passenger aircraft/rail:
Quantity Limitations: Cargo No limit Vessel stowage: Location: A
aircraft only:
Vessel stowage: Other: None
Hazardous materials descriptions and proper shipping names:
Environmentally hazardous substance, liquid, n.o.s

Air Transport IATA:
UN/ID Number: 3082 Packing Group: III
Special provisions: A97
Cargo Only
Packing Instructions: 450 L Maximum Qty/Pack: 964
Passenger and Cargo Passenger and Cargo
Packing Instructions: 450 L Maximum Qty/Pack: 964
Passenger and Cargo Limited Quantity Passenger and Cargo Limited Quantity
Packing Instructions: 30 kg G Maximum Qty/Pack: Y964
Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. *(CONTAINS DIISODECYL PHTHALATE)

Maritime Transport IMDG:
IMDG Class: 9 IMDG Subrisk: None
UN Number: 3082 Packing Group: III
EMS Number: F-A , S-F Special provisions: 179 274 335 909
Section 15 - REGULATORY INFORMATION

diisodecyl phthalate (CAS: 26761-40-0) is found on the following regulatory lists:
"Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)"*,"GESAMP/EHS Composite List - GESAMP Hazard Profiles"*,"IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk"*,"OECD Representative List of High Production Volume (HPV) Chemicals"*,"US - Maine Chemicals of High Concern List"*,"US DOT Coast Guard Bulk Hazardous Materials - List of Flammable and Combustible Bulk Liquid Cargoes"*,"US EPA High Production Volume Program Chemical List"*,"US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory"*,"US TSCA Section 4 - Chemicals Subject to Testing Consent Orders"*

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE
- Ingestion may produce health damage*.
- Cumulative effects may result following exposure*.
- Limited evidence of a carcinogenic effect*.
- May possibly affect fertility*.
* (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Dec-31-2010
Print Date: Jun-10-2011