4-Nitroquinoline N-oxide

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
4-Nitroquinoline N-oxide

STATEMENT OF HAZARDOUS NATURE

NFPA

SUPPLIER
Santa Cruz Biotechnology, Inc.
2145 Delaware Avenue
Santa Cruz, California 95060
800.457.3801 or 831.457.3800

EMERGENCY
ChemWatch
Within the US & Canada: 877–715–9305
Outside the US & Canada: +800 2436 2255
(1–800-CHEMCALL) or call +613 9573 3112

SYNONYMS
C9-H6-N2-O3, "quinoline, 4-nitro-, 1-oxide", 4-nitroquinoline-1-oxide

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW
RISK
Danger of cumulative effects.
May cause CANCER.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
- Accidental ingestion of the material may be damaging to the health of the individual.
- The substance and/or its metabolites may bind to hemoglobin inhibiting normal uptake of oxygen.
 This condition, known as "methemoglobinemia", is a form of oxygen starvation (anoxia).

EYE
- Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn).
 Slight abrasive damage may also result.

SKIN
- The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models).
 Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects.
 Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
- The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified using animal models).
 Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS
- There is ample evidence that this material can be regarded as being able to cause cancer in humans based on experiments and other information.
- Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems.
 Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung.
 Aromatic amine oxides, have some pharmaceutical importance, do not demonstrate surface-acting properties (as do aliphatic amine oxides) and are more resistant than aliphatic amine oxides to reduction. Among the aromatics, 4-nitroquinoline N-oxide is a powerful carcinogen, producing malignant tumors on the skin of mice. 2-Methyl, 2-ethyl, and 6-chloro derivatives of 4-nitroquinoline oxide are also carcinogens.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-nitroquinoline N-oxide</td>
<td>56-57-5</td>
<td>>98</td>
</tr>
</tbody>
</table>

Section 4 - FIRST AID MEASURES

SWALLOWED
- If swallowed do NOT induce vomiting. · If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

EYE
- If this product comes in contact with the eyes: · Wash out immediately with fresh running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN
- If skin or hair contact occurs: · Flush skin and hair with running water (and soap if available). · Seek medical attention in event of irritation.

INHALED
- If dust is inhaled, remove from contaminated area. · Encourage patient to blow nose to ensure clear passage of breathing. · If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN
- Treat symptomatically.
 Symptoms of vasodilation and reflex tachycardia may present following organic nitrate overdose; most organic nitrates are extensively metabolized by hydrolysis to inorganic nitrates. Organic nitrates and nitrates are readily absorbed through the skin, lungs, mucosa and gastrointestinal tract.
 The toxicity of nitrates and nitrates result from their vasodilating properties and their propensity to form methemoglobin.
 · Most produce a peak effect within 30 minutes.
 · Clinical signs of cyanosis appear before other symptoms because of the dark pigmentation of methemoglobin.
Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG): Negligible
Upper Explosive Limit (%): Not available
Specific Gravity (water=1): Not available
Lower Explosive Limit (%): Not available

EXTINGUISHING MEDIA
· Foam.
· Dry chemical powder.

FIRE FIGHTING
· Alert Emergency Responders and tell them location and nature of hazard.
· Wear breathing apparatus plus protective gloves.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
· Combustible solid which burns but propagates flame with difficulty.
· Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
· Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.
· May emit poisonous fumes.

FIRE INCOMPATIBILITY
· Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION
Glasses:
Chemical goggles.
Gloves:
Respirator:
Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
· Remove all ignition sources.
· Clean up all spills immediately.
· Avoid contact with skin and eyes.
· Control personal contact by using protective equipment.
· Use dry clean up procedures and avoid generating dust.
· Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS
· Moderate hazard.
· CAUTION: Advise personnel in area.
· Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING
· Avoid all personal contact, including inhalation.
· Wear protective clothing when risk of exposure occurs.
· Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.
· Do NOT cut, drill, grind or weld such containers.
· In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS
· Polyethylene or polypropylene container.
· Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS
· Store in original containers.
· Keep containers securely sealed.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA</th>
<th>STEL ppm</th>
<th>STEL</th>
<th>Peak ppm</th>
<th>Peak</th>
<th>TWA F/CC</th>
<th>Notes</th>
</tr>
</thead>
</table>

3 of 7
<table>
<thead>
<tr>
<th>Location</th>
<th>Substance Description</th>
<th>Limit (mg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada - British Columbia</td>
<td>4-nitroquinoline N-oxide (Particles (Insoluble or Poorly Soluble) Not Otherwise Classified (PNOC))</td>
<td>10 (N)</td>
</tr>
<tr>
<td>US - Wyoming</td>
<td>4-nitroquinoline N-oxide (Particulates not otherwise regulated (PNOR)(f) Respirable fraction)</td>
<td>5</td>
</tr>
<tr>
<td>US - Tennessee</td>
<td>4-nitroquinoline N-oxide (Particulates not otherwise regulated Respirable fraction)</td>
<td>5</td>
</tr>
<tr>
<td>US - California</td>
<td>4-nitroquinoline N-oxide (Particulates not otherwise regulated Respirable fraction)</td>
<td>5</td>
</tr>
<tr>
<td>US - Oregon Permissible Exposure Limits (Z-1)</td>
<td>4-nitroquinoline N-oxide (Particulates not otherwise regulated (PNOR) (f) Total Dust)</td>
<td>10</td>
</tr>
<tr>
<td>US - Michigan</td>
<td>4-nitroquinoline N-oxide (Particulates not otherwise regulated, Respirable dust)</td>
<td>5</td>
</tr>
<tr>
<td>Canada - Prince Edward Island</td>
<td>4-nitroquinoline N-oxide (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)</td>
<td>10</td>
</tr>
<tr>
<td>US - Oregon Permissible Exposure Limits (Z-1)</td>
<td>4-nitroquinoline N-oxide (Particulates not otherwise regulated (PNOR) (f) Respirable Fraction)</td>
<td>5</td>
</tr>
</tbody>
</table>

Bold print identifies substances for which the Oregon Permissible Exposure Limits (PELs) are different than the federal Limits. PNOR means “particles not otherwise regulated.”

See Appendix B current TLV/BEI Book

Bold print identifies substances for which the Oregon Permissible Exposure Limits (PELs) are different than the federal Limits.
PNOR means "particles not otherwise regulated."

PERSONAL PROTECTION

RESPIRATOR
Particulate

EYE
· Safety glasses with side shields
· Chemical goggles.

HANDS/FEET
· Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
 · frequency and duration of contact,
 · chemical resistance of glove material,
 · glove thickness and
 · dexterity
· Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
· When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
· When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
· Contaminated gloves should be replaced.
· Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
· Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.
 · polychloroprene
 · nitrile rubber
 · butyl rubber
 · fluorocarouchouc
 · polyvinyl chloride
· Gloves should be examined for wear and/ or degradation constantly.

OTHER
· Overalls.
· P.V.C. apron.
· Barrier cream.
· Skin cleansing cream.
· Eye wash unit.

ENGINEERING CONTROLS
· Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
· Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

<table>
<thead>
<tr>
<th>State</th>
<th>Molecular Weight</th>
<th>190.16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Range (°F)</td>
<td>Viscosity</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>309- 313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>Solubility in water (g/L)</td>
<td>Immiscible</td>
</tr>
<tr>
<td>Not available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>pH (1% solution)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Not available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>pH (as supplied)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Not available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>Vapour Pressure (mmHG)</td>
<td>Negligible</td>
</tr>
<tr>
<td>Not available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Specific Gravity (water=1)</td>
<td>Not available</td>
</tr>
<tr>
<td>Not available</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lower Explosive Limit (%): Not available
Relative Vapor Density (air=1): >1
Volatile Component (%vol): Negligible
Evaporation Rate: Not applicable

APPEARANCE
Yellow crystalline powder; does not mix well with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY
- Presence of incompatible materials.
- Product is considered stable.

STORAGE INCOMPATIBILITY
- Nitroaromatic and in particular polynitroaromatic compounds may present a severe explosion risk if subjected to shock or heated rapidly and uncontrollably as in fire situations.
- In addition, when such compounds are heated more moderately with caustic alkalis, even when water or organic solvents are present, there is also a risk of violent decomposition or explosion - several industrial accidents, which probably were due to such interactions, have occurred; this potential hazard often remains unacknowledged.
- Aromatic nitro compounds range from slight to strong oxidizing agents. If mixed with reducing agents, including hydrides, sulfides and nitriles, they may begin a vigorous reaction that culminates in a detonation. The explosive tendencies of aromatic nitro compounds are increased by the presence of multiple nitro groups.
- A range of exothermic decomposition energies for nitro compounds is given as 220-410 kJ/mol. The relationship between energy of decomposition and processing hazards has been the subject of discussion; it is suggested that values of energy released per unit of mass, rather than on a molar basis (J/g) be used in the assessment. For example, in "open vessel processes" (with man-hole size openings, in an industrial setting), substances with exothermic decomposition energies below 500 J/g are unlikely to present a danger, whilst those in "closed vessel processes" (opening is a safety valve or bursting disk) present some danger where the decomposition energy exceeds 150 J/g.

Section 11 - TOXICOLOGICAL INFORMATION

4-nitroquinoline N-oxide

TOXICITY AND IRRITATION

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subcutaneous (rat) LD50: 12.6 mg/kg</td>
<td>Nil Reported</td>
</tr>
<tr>
<td>Intraperitoneal (mouse) LD50: 190 mg/kg</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Substance has been shown to be mutagenic in at least one assay, or belongs to a family of chemicals producing damage or change to cellular DNA.
Acute pulmonary oedema, dyspnaea, tumours of the respiratory tract, gastrointestinal tract, liver, kidney, musculoskeletal system and skin and appendages, lymphoma, effects on fertility, transplacental tumorigenesis recorded.
Carcinogenic by RTECS criteria.

Section 12 - ECOLOGICAL INFORMATION

Ecotoxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
<th>Bioaccumulation</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-nitroquinoline N-oxide</td>
<td>HIGH</td>
<td></td>
<td>LOW</td>
<td>MED</td>
</tr>
</tbody>
</table>

No data

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.
Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.
A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

4-nitroquinoline N-oxide (CAS: 56-57-5) is found on the following regulatory lists;

Section 16 - OTHER INFORMATION

ND
Substance CAS Suggested codes 4- nitroquinoline N- oxide 56- 57- 5 Mut3; R68 Xn; R22

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Dec-31-2008
Print Date: Apr-6-2011