Material Safety Data Sheet

Sucrose benzoate

sc-258186

Hazard Alert Code

Key:

<table>
<thead>
<tr>
<th>Extreme</th>
<th>High</th>
<th>Moderate</th>
<th>Low</th>
</tr>
</thead>
</table>

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Sucrose benzoate

STATEMENT OF HAZARDOUS NATURE

NFPA

SUPPLIER
Company: Santa Cruz Biotechnology, Inc.
Address:
2145 Delaware Ave
Santa Cruz, CA 95060
Telephone: 800.457.3801 or 831.457.3800
Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305
Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE
In formulation of clear coatings for wood, paper, metals, inks. Modifier for clear lacquers.

SYNONYMS

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS
None

EMERGENCY OVERVIEW

RISK

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

■ The material has NOT been classified as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, unintentional ingestion is not thought to be cause for concern.

EYE

■ Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

SKIN
The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. Molten material is capable of causing burns.

INHALED
- The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
- There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
- Processing for an overly long time or processing at overly high temperatures may cause generation and release of highly irritating vapors, which irritate eyes, nose, throat, causing red itching eyes, coughing, sore throat.
- Usually handled as molten liquid which requires worker thermal protection and increases hazard of vapor exposure. **CAUTION:** Vapors may be irritating.

CHRONIC HEALTH EFFECTS
- Long-term exposure to the product is not thought to produce chronic effects adverse to the health (as classified using animal models); nevertheless exposure by all routes should be minimized as a matter of course.
- Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>sucrose benzoate</td>
<td>12738-64-6</td>
<td>>98</td>
</tr>
</tbody>
</table>

Section 4 - FIRST AID MEASURES

SWALLOWED
- Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Center or a doctor.

EYE
- If this product comes in contact with eyes:
 - Wash out immediately with water.
 - If irritation continues, seek medical attention.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
- For THERMAL burns:
 - Do NOT remove contact lens
 - Lay victim down, on stretcher if available and pad BOTH eyes, make sure dressing does not press on the injured eye by placing thick pads under dressing, above and below the eye.
 - Seek urgent medical assistance, or transport to hospital.

SKIN
- If skin or hair contact occurs:
 - Flush skin and hair with running water (and soap if available).
 - Seek medical attention in event of irritation.
- In case of burns:
 - Immediately apply cold water to burn either by immersion or wrapping with saturated clean cloth.
 - **DO NOT** remove or cut away clothing over burnt areas. **DO NOT** pull away clothing which has adhered to the skin as this can cause further injury.
 - **DO NOT** break blister or remove solidified material.
 - Quickly cover wound with dressing or clean cloth to help prevent infection and to ease pain.
 - For large burns, sheets, towels or pillow slips are ideal; leave holes for eyes, nose and mouth.
 - **DO NOT** apply ointments, oils, butter, etc. to a burn under any circumstances.
 - Water may be given in small quantities if the person is conscious.
 - Alcohol is not to be given under any circumstances.
 - Reassure.
 - Treat for shock by keeping the person warm and in a lying position.
 - Seek medical aid and advise medical personnel in advance of the cause and extent of the injury and the estimated time of arrival of the patient.

INHALED
If fumes or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary.

NOTES TO PHYSICIAN
■ Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapour Pressure (mmHG)</td>
<td>Negligible</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>1.25</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

EXTINGUISHING MEDIA
■ Do NOT direct a solid stream of water or foam into burning molten material; this may cause spattering and spread the fire.
■ Foam.
■ Dry chemical powder.
■ BCF (where regulations permit).
■ Carbon dioxide.
■ Water spray or fog - Large fires only.

FIRE FIGHTING
■ Alert Emergency Responders and tell them location and nature of hazard.
■ Wear breathing apparatus plus protective gloves.
■ Prevent, by any means available, spillage from entering drains or water course.
■ Use water delivered as a fine spray to control fire and cool adjacent area.
■ DO NOT approach containers suspected to be hot.
■ Cool fire exposed containers with water spray from a protected location.
■ If safe to do so, remove containers from path of fire.
■ Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
■ Combustible solid which burns but propagates flame with difficulty.
■ Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
■ Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
■ Build-up of electrostatic charge may be prevented by bonding and grounding.
■ Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.
Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), other pyrolysis products typical of burning organic material. May emit corrosive fumes.
CARE: Contamination of heated / molten liquid with water may cause violent steam explosion, with scattering of hot contents.

FIRE INCOMPATIBILITY
■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION
Glasses:
Chemical goggles.
Gloves:
Respirator:
Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
■ Clean up all spills immediately.
■ Avoid breathing dust and contact with skin and eyes.
■ Wear protective clothing, gloves, safety glasses and dust respirator.
■ Use dry clean up procedures and avoid generating dust.
■ Sweep up, shovel up or vacuum up (consider explosion-proof machines designed to be grounded during storage and use).
■ Place spilled material in clean, dry, sealable, labeled container.

MAJOR SPILLS
■ Moderate hazard.
■ CAUTION: Advise personnel in area.
■ Alert Emergency Responders and tell them location and nature of hazard.
■ Control personal contact by wearing protective clothing.
■ Prevent, by any means available, spillage from entering drains or water courses.
■ Recover product wherever possible.
■ IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.

If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

■ The greatest potential for injury caused by molten materials occurs during purging of machinery (moulders, extruders etc.)
■ It is essential that workers in the immediate area of the machinery wear eye and skin protection (such as full face, safety glasses, heat resistant gloves, overalls and safety boots) as protection from thermal burns.
■ Fumes or vapors emitted from hot melted materials, during converting operations, may condense on overhead metal surfaces or exhaust ducts. The condensate may contain substances which are irritating or toxic. Avoid contact of that material with the skin. Wear rubber or other impermeable gloves when cleaning contaminated areas.
■ Avoid process temperatures above decomposition temperatures. Overheating may occur at excessively high cylinder heats, overworking of the melt by wrong screw configuration, or by long dwell time in the machine. Under such conditions, thermal emissions and heat-degradation products might, without proper ventilation, reach hazardous concentrations in the converting area. Hot purgings should be collected only as thin flat strands to allow for rapid cooling. Hot purgings should be cooled by quenching in water in a well-ventilated area.
■ Avoid all personal contact, including inhalation.
■ Wear protective clothing when risk of exposure occurs.
■ Use in a well-ventilated area.
■ Prevent concentration in hollows and sumps.
■ DO NOT enter confined spaces until atmosphere has been checked.
■ DO NOT allow material to contact humans, exposed food or food utensils.
■ Avoid contact with incompatible materials.
■ When handling, DO NOT eat, drink or smoke.
■ Keep containers securely sealed when not in use.
■ Avoid physical damage to containers.
■ Always wash hands with soap and water after handling.
■ Work clothes should be laundered separately.
■ Launder contaminated clothing before re-use.
■ Use good occupational work practice.
■ Observe manufacturer’s storing and handling recommendations.
■ Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.
■ Do NOT cut, drill, grind or weld such containers
■ In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

■ Lined metal can, Lined metal pail/drum
■ Plastic pail
■ Polyliner drum
■ Packing as recommended by manufacturer.
■ Check all containers are clearly labeled and free from leaks.

STORAGE REQUIREMENTS

■ Store in original containers.
■ Keep containers securely sealed.
■ Store in a cool, dry, well-ventilated area.
■ Store away from incompatible materials and foodstuff containers.
■ Protect containers against physical damage and check regularly for leaks.
■ Observe manufacturer’s storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS
Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records
- sucrose benzoate: CAS:12736-64-8 CAS:56093-82-4

MATERIAL DATA
SUCROSE BENZOATE:
- Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLVC) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA. OSHA (USA) concluded that exposure to sensory irritants can:
 - cause inflammation
 - cause increased susceptibility to other irritants and infectious agents
 - lead to permanent injury or dysfunction
 - permit greater absorption of hazardous substances and
 - acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE
- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET
- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
 - frequency and duration of contact,
 - chemical resistance of glove material,
 - glove thickness and
dexterity
Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
- When handling hot materials wear heat resistant, elbow length gloves.
- Rubber gloves are not recommended when handling hot objects, materials
- Protective gloves eg. Leather gloves or gloves with Leather facing
Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.
- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocautchouc
- polyvinyl chloride
Gloves should be examined for wear and/ or degradation constantly.

OTHER
- When handling hot or molten liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.
 Usually handled as molten liquid which requires worker thermal protection and increases hazard of vapor exposure.CAUTION:
Vapors may be irritating.
- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory . These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

** ENGINEERING CONTROLS **
- For molten materials: Provide mechanical ventilation; in general such ventilation should be provided at compounding/converting areas and at fabricating/filling work stations where the material is heated. Local exhaust ventilation should be used over and in the vicinity of machinery involved in handling the molten material.
- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:
 - (a): particle dust respirators, if necessary, combined with an absorption cartridge;
 - (b): filter respirators with absorption cartridge or canister of the right type;
 - (c): fresh-air hoods or masks.
- Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.
- Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

<table>
<thead>
<tr>
<th>Type of Contaminant</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct spray, spray painting in shallow booths, drum filling, conveyor loading, chunks, dust, gas discharge (active generation into zone of rapid air motion)</td>
<td>1-2.5 m/s (200-500 f/min.)</td>
</tr>
<tr>
<td>grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).</td>
<td>2.5-10 m/s (500-2000 f/min.)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

** Lower end of the range **

1: Room air currents minimal or favorable to capture
2: Contaminants of low toxicity or of nuisance value only

** Upper end of the range **

1: Disturbing room air currents
2: Contaminants of high toxicity
Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

<table>
<thead>
<tr>
<th>State</th>
<th>Divided Solid</th>
<th>Molecular Weight</th>
<th>1110 (approx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Range (°F)</td>
<td>208.4 (softens)</td>
<td>Viscosity</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>Not Available</td>
<td>Solubility in water (g/L)</td>
<td>Partly Miscible</td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>500 (Tag Open Cup)</td>
<td>pH (1% solution)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>Not Available</td>
<td>pH (as supplied)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>Not Available</td>
<td>Vapour Pressure (mmHG)</td>
<td>Negligible</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Available</td>
<td>Specific Gravity (water=1)</td>
<td>1.25</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not Available</td>
<td>Relative Vapor Density (air=1)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Negligible</td>
<td>Evaporation Rate</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

APPEARANCE

Glassy, clear, odourless, non-crystalline brittle solid; does not mix well with water. Soluble in acetic acid, acetone, benzene, benzonitrile, butyl acetate, carbon tetrachloride, dibutyl phthalate, didobutyl ketone, diethyl ether, dioxane, isophorone, MIBK, MEK, polyethylene glycols, toluene, tricresyl phosphate, xylene. Prolonged heating at elevated temperatures causes darkening and increases in acidity.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Product is considered stable and hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

- Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

sucrose benzoate

TOXICITY AND IRRITATION

- unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY

- Skin (rabbit): non-irritating *

IRRITATION

- Eye (rabbit): non-irritating *

* Unitex MSDS

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

SUCROSE BENZOATE:

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations. Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change
in use, and recycling or reuse may not always be appropriate.
DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

sucrose benzoate (CAS: 12738-64-6, 56093-82-4) is found on the following regulatory lists:
Canada Domestic Substances List (DSL)""US FDA Indirect Food Additives: Adhesives and Components of Coatings - Substances for Use Only as Components of Adhesives - Adhesives"*"US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE
- May produce discomfort of the respiratory system*.
 *(limited evidence).

Ingredients with multiple CAS Nos

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>CAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>sucrose benzoate</td>
<td>12738-64-6, 56093-82-4</td>
</tr>
</tbody>
</table>

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.
A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Oct-24-2009
Print Date: Apr-22-2010