Rad1 (yC-19): sc-26236

The Power to Question

BACKGROUND

Multiple pathways promote short-sequence recombination (SSR) in Saccharomyces cerevisiae. When gene conversion is initiated by a double-strand break (DSB), any nonhomologous DNA that may be present at the ends must be removed before new DNA synthesis can be initiated. Removal of a 3' nonhomologous tail in S. cerevisiae depends on the nucleotide excision repair endonuclease Rad1/Rad10, and also on the mismatch repair proteins Msh2 and Msh3. MRE11, Rad50, and XRS2, which encode the subunits of M/R/X, another complex with nuclease activity, are also crucially important for shortsequence recombination. Genetic evidence suggests that Rad1/10 and M/R/X act on the same class of substrates during SSR. MSH2 and MSH3, which encode subunits of Msh2/3, a complex active during mismatch repair and recombination, play a more restricted role in SSR. The Rad1/Rad10 endonuclease is required to trim intermediates formed during single-strand annealing. Rad1 is the first gene identified that controls specifically the expansion of minisatellite tracts. Minisatellite DNA is repetitive DNA with a repeat unit length from 15 to 100 bp.

REFERENCES

- Sugawara, N., Paques, F., Colaiacovo, M. and Haber, J.E. 1997. Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in doublestrand break-induced recombination. Proc. Natl. Acad. Sci. USA 94: 9214-9219.
- Paques, F. and Haber, J.E. 1997. Two pathways for removal of nonhomologous DNA ends during double-strand break repair in *Saccharomyces cerevisiae*. Mol. Cell. Biol.17: 6765-6771.
- Kang, L.E. and Symington, L.S.2000. Aberrant double-strand break repair in Rad51 mutants of *Saccharomyces cerevisiae*. Mol. Cell. Biol. 20: 9162-9172.
- Kearney, H.M., Kirkpatrick, D.T., Gerton, J.L. and Petes, T.D. 2001. Meiotic recombination involving heterozygous large insertions in *Saccharomyces cerevisiae*: formation and repair of large, unpaired DNA loops. Genetics 158: 1457-1476.
- Jauert, P.A., Edmiston, S.N., Conway, K. and Kirkpatrick, D.T. 2002. Rad1 controls the meiotic expansion of the human HRAS1 minisatellite in Saccharomyces cerevisiae. Mol. Cell. Biol. 22: 953-964.
- Manthey, G.M. and Bailis, A.M. 2002. Multiple pathways promote shortsequence recombination in *Saccharomyces cerevisiae*. Mol. Cell. Biol. 22: 5347-5356.

SOURCE

Rad1 (yC-19) is an affinity purified goat polyclonal antibody raised against a peptide mapping near the N-terminus of Rad1 of Saccharomyces cerevisiae origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-26236 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

APPLICATIONS

Rad1 (yC-19) is recommended for detection of Rad1 of *Saccharomyces cerevisiae* origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Molecular Weight of Rad1: 126 kDa.

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey anti-goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**