Cobalt(II) 2,4-pentanedionate

sc-268752

Material Safety Data Sheet

Hazard Alert Code Key:
EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Cobalt(II) 2,4-pentanedionate

STATEMENT OF HAZARDOUS NATURE

NFPA

SUPLIER
Santa Cruz Biotechnology, Inc.
2145 Delaware Avenue
Santa Cruz, California 95060
800.457.3801 or 831.457.3800

EMERGENCY:
ChemWatch
Within the US & Canada: 877-715-9305
Outside the US & Canada: +613 9573 3112

PRODUCT USE
Catalyst. Intermediate

SYNONYMS
C10-H14-O4-Co, (CH3COCH=C(O-)CH3)2Co, "2, 4-pentanedione, cobalt (II) derivative", "cobalt bis(2, 4-pentanedione) complex", "cobalt (II) 2, 4-pentanedionate", "cobaltous acetylacetonate"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

CANADIAN WHMIS SYMBOLS

1 of 12
EMERGENCY OVERVIEW

RISK
- Risk of serious damage to eyes.
- May cause CANCER by inhalation.
- May cause SENSITIZATION by inhalation and skin contact.
- Harmful by inhalation, in contact with skin and if swallowed.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- In toxic doses soluble cobalt salts produce stomach pain and vomiting, flushing of the face and ears, rash, ringing in the ears, nervous deafness and reduced blood flow to the extremities.
- Ingestion of 2,4-pentanedione (acetylacetone) may produce irritation of the mouth, oesophagus and stomach producing abdominal discomfort, nausea, vomiting diarrhoea, dizziness, malaise and fainting.
- At sufficiently high doses the material may be neurotoxic(i.e. poisonous to the nervous system).

EYE
- If applied to the eyes, this material causes severe eye damage.
- Exposure to 2,4-pentanedione may produce excessive redness of the eyes and swelling of the conjunctivae; blinking and tearing may occur. Corneal damage is unlikely.

SKIN
- Skin contact with the material may be harmful; systemic effects may result following absorption.
- The material is not thought to be a skin irritant (as classified using animal models). Abrasive damage however, may result from prolonged exposures. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- 2,4-Pentadione may produce contact dermatitis or urticaria. Prolonged contact with 2,4-pentanedione may produce a reversible dermatitis.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
- Inhalation of dusts, generated by the material, during the course of normal handling, may be harmful.
- The material is not thought to produce respiratory irritation (as classified using animal models). Nevertheless inhalation of dusts, or fume, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
- Cobalt poisoning can cause inflammation of the terminal airways (bronchioles), and cause lethargy and death within hours.
- At sufficiently high doses the material may be neurotoxic(i.e. poisonous to the nervous system).
- High doses of 2,4-pentanedione produced dyspnae, severe, central nervous system depression and death in experimental animals. Similar effects were produced at lower repeated doses although some animals survive and develop a central nervous system disorder characterised by irreversible cerebellar syndrome. Thymic necrosis and atrophy accompany the central nervous system damage. [Patty's].
- Inhalation of vapours may produce narcosis.

Health hazards from welding fume containing cobalt are not well documented but there are well-known dangers associated with the processing of the substance by other techniques. Inhalation of the fume may result in shortness of breath, coughing and pneumonitis. Hypersensitivity, involving lung changes, occurs in a small number of workers exposed to the fume; the symptoms disappear after exposure ends. Obliterative bronchiolitis adenomatosis has been produced in guinea pigs receiving intratracheal injections of 10 mg cobalt dust. Intratracheal administration of 12.5 mg/kg caused lethargy and death in rats in 15 minutes to 6 hours.

CHRONIC HEALTH EFFECTS
- On the basis of epidemiological data, it has been concluded that prolonged inhalation of the material, in an occupational setting, may produce cancer in humans.
- Inhaling this product is more likely to cause a sensitization reaction in some persons compared to the general population.
- Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population.
- Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.
- Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.
- Inhalation of cobalt powder can induce asthma, chest tightness and chronic inflammation of the bronchi. Chronic exposure to cobalt causes increase in blood hemoglobin, increased production of cells in the blood marrow and thyroid gland, discharge from around the heart and damage to the alpha cells of the pancreas. Long-term administration has caused goiter (overactivity of the thyroid) and reduced thyroid activity. Allergic inflammation of the skin may appear following exposure to cobalt, usually exhibited as red patches. Injection of cobalt can cause cancer at the site of entry.
- Repeated overexposure to 200 ppm 2,4-pentanedione vapor may result in inflammation of the nasal mucosa. Higher concentrations may produce central nervous system effects, and immune system and bone marrow deficits. Recurrent exposure to high concentrations of the
2,4-pentadione vapor (~650 ppm) produces lethal degenerative lesions in the central nervous system and thymus. Exposure in pregnancy can damage to fetus.

In use the substance may decompose to produce 2,4-pentanedione a powerful neurotoxin.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>cobalt(II) acetylacetonate</td>
<td>14024-48-7</td>
<td>>98</td>
</tr>
</tbody>
</table>

May decompose to produce

| 2,4-pentanedione | 123-54-6 |

Section 4 - FIRST AID MEASURES

SWALLOWED
- If swallowed, refer for medical attention, where possible, without delay.
- Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
 - For advice, contact a Poisons Information Center or a doctor.
 - Urgent hospital treatment is likely to be needed.
 - If conscious, give water to drink.
 - Induce vomiting with fingers down the back of the throat, only if conscious.
 - Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
 - Note: Wear a protective glove when inducing vomiting by mechanical means.

- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient’s condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided.
- Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

EYE
- If this product comes in contact with the eyes:
 - Immediately hold eyelids apart and flush the eye continuously with running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes.
 - Transport to hospital or doctor without delay.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN
- If skin contact occurs:
 - Immediately remove all contaminated clothing, including footwear.
 - Flush skin and hair with running water (and soap if available).
 - Seek medical attention in event of irritation.

INHALED
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained.
- Perform CPR if necessary.
 - Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained.
 - Perform CPR if necessary.

NOTES TO PHYSICIAN
- for poisons (where specific treatment regime is absent):
 - Establish a patent airway with suction where necessary.
 - Watch for signs of respiratory insufficiency and assist ventilation as necessary.
 - Administer oxygen by non-rebreather mask at 10 to 15 l/min.
 - Monitor and treat, where necessary, for pulmonary edema.
 - Monitor and treat, where necessary, for shock.
 - Anticipate seizures.
 - Do not use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

Section 5 - FIRE FIGHTING MEASURES

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary edema.
- Hypotension with signs of hypovolemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

BRONSTEIN, A.C. and CURRANCE, P.L.
EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE; 2nd Ed. 1994.
Treat symptomatically.
Vapour Pressure (mmHG): Not applicable

Upper Explosive Limit (%): Not Available

Specific Gravity (water=1): Not available

Lower Explosive Limit (%): Not Available

EXTINGUISHING MEDIA
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog - Large fires only.

FIRE FIGHTING
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.
- Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), metal oxides, other pyrolysis products typical of burning organic material.
- May emit poisonous fumes.
- May emit corrosive fumes.

FIRE INCOMPATIBILITY
- Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION
- **Glasses:** Chemical goggles.
- **Gloves:**
- **Respirator:** Type A-P Filter of sufficient capacity

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS
- Moderate hazard.
- **CAUTION:** Advise personnel in area.
- Alert Emergency Responders and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
· Prevent concentration in hollows and sumps.
· DO NOT enter confined spaces until atmosphere has been checked.
· DO NOT allow material to contact humans, exposed food or food utensils.
· Avoid contact with incompatible materials.
· When handling, DO NOT eat, drink or smoke.
· Keep containers securely sealed when not in use.
· Avoid physical damage to containers.
· Always wash hands with soap and water after handling.
· Work clothes should be laundered separately.
· Launder contaminated clothing before re-use.
· Use good occupational work practice.
· Observe manufacturer's storing and handling recommendations.
· Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

· Do NOT cut, drill, grind or weld such containers.
· In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS
· Polyethylene or polypropylene container.
· Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS
· Store in original containers.
· Keep containers securely sealed.
· Store in a cool, dry, well-ventilated area.
· Store away from incompatible materials and foodstuff containers.
· Protect containers against physical damage and check regularly for leaks.
· Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

X: Must not be stored together
O: May be stored together with specific preventions
+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>US - Washington Permissible exposure limits of air contaminants</td>
<td>cobalt(II) acetylacetonate (Cobalt, metal fume & dust (as Co))</td>
<td>0.05</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances</td>
<td>cobalt(II) acetylacetonate (Cobalt metal, dust and fume (as Co))</td>
<td>-</td>
<td>-</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Alberta Occupational Exposure Limits</td>
<td>2,4-pentandione (Kerosene/Jet fuels, as total hydrocarbon vapour)</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Ontario Occupational Exposure Limits</td>
<td>2,4-pentandione (Diesel fuel, as total hydrocarbons, vapour and aerosol)</td>
<td>100</td>
<td></td>
<td>Skin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits</td>
<td>2,4-pentandione (Diesel fuel as total hydrocarbons, (vapour))</td>
<td>100</td>
<td>150</td>
<td>Skin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Suitability and durability of glove type is dependent on usage. Important factors in the selection of protective equipment, to avoid all possible skin contact.

HANDS/FEET

Consult your EHS staff for recommendations

EYE

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET

- NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
 - frequency and duration of contact.
 - chemical resistance of glove material.
 - glove thickness and
dexterity
Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

· When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
· When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
· Contaminated gloves should be replaced.
Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.
· polychloroprene
· nitrile rubber
· butyl rubber
· fluoroelastomer
· polyvinyl chloride
Gloves should be examined for wear and/ or degradation constantly.

OTHER
· Overalls.
· P.V.C. apron.
· Barrier cream.
· Skin cleansing cream.
· Eye wash unit.

RESPIRATOR
· Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
· The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
· Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory. These may be government mandated or vendor recommended.
· Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
· Use approved positive flow mask if significant quantities of dust becomes airborne.
· Try to avoid creating dust conditions.

<table>
<thead>
<tr>
<th>Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x PEL</td>
<td>A P1</td>
<td>-</td>
<td>A PAPR-P1</td>
</tr>
<tr>
<td></td>
<td>Air-line*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>50 x PEL</td>
<td>Air-line**</td>
<td>A P2 A</td>
<td>PAPR-P2</td>
</tr>
<tr>
<td>100 x PEL</td>
<td>-</td>
<td>A P3</td>
<td>-</td>
</tr>
<tr>
<td>100+ x PEL</td>
<td>-</td>
<td>Air-line*</td>
<td>-</td>
</tr>
</tbody>
</table>

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:
Class 1 low to medium absorption capacity filters.
Class 2 medium absorption capacity filters.
Class 3 high absorption capacity filters.
PAPR Powered Air Purifying Respirator (positive pressure) cartridge.
Type A for use against certain organic gases and vapors.
Type AX for use against low boiling point organic compounds (less than 65°C).
Type B for use against certain inorganic gases and other acid gases and vapors.
Type E for use against sulfur dioxide and other acid gases and vapors.
Type K for use against ammonia and organic ammonia derivatives
Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.
Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.
Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.
The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.
Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS
· Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
· Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
· If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:
 (a): particle dust respirators, if necessary, combined with an absorption cartridge;
(b): filter respirators with absorption cartridge or canister of the right type;
(c): fresh-air hoods or masks
· Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
· Air contaminants generated in the workplace possess varying “escape” velocities which, in turn, determine the “capture velocities” of fresh circulating air required to efficiently remove the contaminant.

<table>
<thead>
<tr>
<th>Type of Contaminant:</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>1-2.5 m/s (200-500 f/min.)</td>
</tr>
<tr>
<td>grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).</td>
<td>2.5-10 m/s (500-2000 f/min.)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

<table>
<thead>
<tr>
<th>Lower end of the range</th>
<th>Upper end of the range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Room air currents minimal or favorable to capture</td>
<td>1: Disturbing room air currents</td>
</tr>
<tr>
<td>2: Contaminants of low toxicity or of nuisance value only</td>
<td>2: Contaminants of high toxicity</td>
</tr>
<tr>
<td>3: Intermittent, low production.</td>
<td>3: High production, heavy use</td>
</tr>
<tr>
<td>4: Large hood or large air mass in motion</td>
<td>4: Small hood-local control only</td>
</tr>
</tbody>
</table>

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.
Does not mix with water.

<table>
<thead>
<tr>
<th>State</th>
<th>Divided solid</th>
<th>Molecular Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Range (°F)</td>
<td>329- 338</td>
<td>Viscosity</td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>Not available.</td>
<td>Solubility in water (g/L)</td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>Not Available</td>
<td>pH (1% solution)</td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>Not available.</td>
<td>pH (as supplied)</td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>Not Available</td>
<td>Vapour Pressure (mmHG)</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Available</td>
<td>Specific Gravity (water=1)</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not Available</td>
<td>Relative Vapor Density (air=1)</td>
</tr>
</tbody>
</table>

APPEARANCE
Violet powder; does not mix well with water.

\[\log Kow = 1.9-2.25 \]
\[\log Kow (Prager 1995) = 0.14 \]

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

· Presence of incompatible materials.
· Product is considered stable.
· Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY
· Avoid reaction with oxidizing agents.
For 2,4-pentanedione:
· Segregate from halogens.
· Store away from steel, nickel, zinc, galvanized iron, tinned iron, copper and copper alloys.

For incompatible materials - refer to Section 7 - Handling and Storage.
Section 11 - TOXICOLOGICAL INFORMATION

COBALT(II) ACETYLACETONATE

TOXICITY AND IRRITATION

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.
■ The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

COBALT(II) ACETYLACETONATE:
■ Allergic reactions involving the respiratory tract are usually due to interactions between IgE antibodies and allergens and occur rapidly. Allergic potential of the allergen and period of exposure often determine the severity of symptoms. Some people may be genetically more prone than others, and exposure to other irritants may aggravate symptoms. Allergy causing activity is due to interactions with proteins. Attention should be paid to atopic diathesis, characterized by increased susceptibility to nasal inflammation, asthma and eczema.
■ Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure.
■ Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's edema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitization potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitizing substance which is widely distributed can be a more important allergen than one with stronger sensitizing potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

TOXICITY

IRRITATION

2,4-PENTANEDIONE:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (rat) LD50</td>
<td>970 mg/kg *</td>
</tr>
<tr>
<td>Skin (rabbit)</td>
<td>10 mg/24h</td>
</tr>
<tr>
<td>Oral (rat) LD50</td>
<td>55 mg/kg</td>
</tr>
<tr>
<td>Skin (rabbit)</td>
<td>0.476 - SEVERE</td>
</tr>
<tr>
<td>Dermal (rabbit)</td>
<td>810 mg/kg</td>
</tr>
<tr>
<td>Skin (rabbit)</td>
<td>488 mg - Mild</td>
</tr>
</tbody>
</table>

* [Union Carbide]

■ The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

CARCINOGEN

COBALT COMPOUNDS

US Environmental Defense Scorecard	US Environmental Defense Scorecard	Reference(s)
Suspected Carcinogens | Suspected Carcinogens | IARC, P65-MC |

SKIN

<table>
<thead>
<tr>
<th>Substance</th>
<th>Canada - Alberta Occupational Exposure Limits - Skin</th>
<th>Substance Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-pentanedione</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

2,4-PENTANEDIONE:

■ DO NOT discharge into sewer or waterways.
■ for 2,4-pentanedione:
 ■ log Kow : 1.9-2.25
 ■ BOD 5 if unstated: 5.60%

■ Harmful to aquatic life/birdlife.

■ Environmental fate:
 ■ Biodegradation of 2,4-pentadione occurs in the soil. Leaching into ground water is expected to occur. Biodegradation in water is expected to proceed at a moderate rate. No significant bioaccumulation is expected to occur.
 ■ In air 2,4-pentadione undergoes photochemical degradation to hydroxyl radicals. The material is expected to be removed from air by wet deposition with a half-life between 10 and 30 days.

COBALT(II) ACETYLACETONATE:

■ for cobalt compounds:
 ■ Environmental Fate:
 ■ Cobalt strongly binds to humic substances naturally present in aquatic environments. Humic acids can be modified by UV light and bacterial decomposition, which may change their binding characteristics over time. The lability of the complexes is strongly influenced by pH, the nature of the humic material, and the metal-to-humic substance ratio. The lability of cobalt-humate complexes decreases in time ("aging effect"). The "aging effect" indicates that after a period of time (~12 hours), complexes that were initially formed are transformed into stronger ones from which the metal ion is less readily dislodged.
 ■ Between 45 and 100% of dissolved cobalt was found to occur in very strong complexes. The distribution coefficient of cobalt may vary considerably in the same sediment in response to conditions affecting the pH, redox conditions, ionic strength, and amount of dissolved organic matter. Uptake of 60Co from the water by sediment increased rapidly as the pH was increased from 5 to 7 - 7.5 and then slightly decrease. Therefore, pH would be an important factor affecting the migration of cobalt in surface water. Uptake was little affected by changes in liquid-to-solids ratio and ionic strength. 60Co is more mobile in anaerobic marine aquatic environments than in freshwater aerobic ones. In seawater sediment systems under anaerobic conditions 60Co was 250 times more mobile than 60Co in freshwater sediment systems under aerobic conditions. Under anaerobic conditions, 30% of the 60Co added to a sediment-freshwater system was "exchangeable" and therefore
potentially mobile, while under aerobic conditions, 98% of the 60Co was permanently fixed. Most of the mobile 60Co produced under anaerobic conditions in seawater consisted of nonionic cobalt associated with low molecular weight organic substances that were stable to changes in pH; the exchangeable 60Co appeared to be mostly ionic. The mobility of cobalt in soil is inversely related to how strongly it is adsorbed by soil constituents. Cobalt may be retained by mineral oxides such as iron and manganese oxide, crystalline materials such as aluminosilicate and goethite, and natural organic substances in soil. Sorption of cobalt to soil occurs rapidly (within 1-2 hours). Soil-derived oxide materials were found to adsorb greater amounts of cobalt than other materials examined, although substantial amounts were also adsorbed by organic materials. Clay minerals sorbed relatively smaller amounts of cobalt. In addition, little cobalt was desorbed from soil oxides while substantial amounts desorbed from humic acids and montmorillonite. In clay soil, adsorption may be due to ion exchange at the cationic sites on clay with either simple ionic cobalt or hydrolysed ionic species such as CoOH+. Adsorption of cobalt onto iron and manganese increases with pH. In addition, as pH increases, insoluble hydroxides or carbonates may form, which would also reduce cobalt mobility. Conversely, sorption onto mobile colloids would enhance its mobility. In most soils, cobalt is more mobile than lead, chromium (Il), zinc, and nickel, but less mobile than cadmium. In several studies, the Kd of cobalt in a variety of soils ranged from 0.2 to 3.800. The soil properties showing the highest correlation with Kd were exchangeable calcium, pH, water content, and cation exchange capacity. Organic complexing agents such as ethylenediaminetetraacetic acid (EDTA), which are used for decontamination operations at nuclear facilities, greatly enhance the mobility of cobalt in soil. Other organic complexing agents, such as those obtained from plant decay, may also increase cobalt mobility in soil. However, both types of complexes decrease cobalt uptake by plants. Addition of sewage sludge to soil also increases the mobility of cobalt, perhaps due to the presence of complexing agents.

Cobalt may be taken up from soil by plants. Surface deposition of cobalt on leaves of plants from airborne particles may also occur. Elevated levels of cobalt have been found in the roots of sugar beets and potato tubers in soils with high cobalt concentrations (e.g., fly ash-amended soil) due to absorption of cobalt from soil. However, the translocation of cobalt from roots to above-ground parts of plants is not significant in most soils, as indicated by the lack of cobalt in seeds of barley, oats, and wheat grown in high-cobalt soil. However, in highly acidic soil (pH as low as 3.3), significantly higher than normal concentrations of cobalt were found in rye grass foliage, oats, and barley. For example, cobalt concentrations in rye grass grown in unlimed soil (pH<5.0) was 19.7 mg/kg compared with 1.1 mg/kg in rye grass grown in limed soil (pH>5). In plant samples taken in the 30-km zone around Chernobyl, which is not contaminated by plants and mushrooms. Studies investigating the uptake of 60Co by tomato plants watered with 60Co contaminated water showed that tomato plants absorbed <2% of the activity available from the soil.

60Co is taken up by phytoplankton and unicellular algae (Senenastrium capricornutum) with concentration factors (dry weight) ranging from 15,000 to 40,000 and 2,300 to 18,000, respectively. Elimination experiments with the algae indicate a two component biological half-life, 1 hour and 11 days, respectively, and suggest that the cobalt might be absorbed not only on the surface, but also intracellularly. Since these organisms are at the bottom of the food chain, they could play an important role in the trophic transfer of 60Co released into waterways by natural processes. However, the levels of cobalt that are non-mobile levels in a food chain. The low levels of cobalt in fish may also reflect cobalt's strong binding to particles and sediment. The bioaccumulation factors (dry weight basis) for cobalt in marine and freshwater fish are ~100-4,000 and <10-1,000, respectively; accumulation in the muscle of marine fish is 5-500. Cobalt largely accumulates in the viscera and on the skin, as opposed to the edible parts of the fish. In carp, accumulation from water accounted for 75% of 60Co accumulated from both water and food; accumulation from water and food was additive. Depuration half-lives were 53 and 87 days for fish contaminated from food and water, respectively. In the case of an accidental release of 60Co into waterways, the implication is that effects would manifest themselves rapidly since the primary route of exposure is from water rather than food. Uptake of 60Co was very low in whitefish, with concentrations being highest in kidney and undetectable in muscle. Similarly, the uptake of 60Co from food was dependent on food type, the transfer factor was very low, approximately 0.01, and no long-term bioaccumulation of the radionuclide occurred.

Concentration factors have also been reported for various other aquatic organisms. Freshwater mollusks have concentration factors of 100-14,000 (~1-300 in soft tissue). Much of the cobalt taken up by mollusks and crustaceans from water or sediment is adsorbed to the shell or exoskeleton; very little cobalt is generally accumulated in the edible parts. A concentration factor for 60Co of 265 mL/g (wet weight) was determined for Daphnia magna in laboratory studies. The rapid decrease in radioactivity during the depuration phase indicated that the adsorption to the surface was the major contamination process. However, the digestive glands of crustaceans, which are sometimes eaten by humans, may accumulate high levels of 60Co. The shell accounted for more than half of the body burden. Among the soft tissue, the gills and viscera had the highest concentrations factors and the muscle had the lowest.

In mussels, absorption efficiencies and lower efflux rates were obtained for cobalamins than for cobalt. Cobalt concentrations (e.g., fly ash-amended soil) for cobalt in marine and freshwater fish are ~100-4,000 and <10-1,000, respectively; accumulation in the muscle of marine fish is 5-500. Cobalt largely accumulates in the viscera and on the skin, as opposed to the edible parts of the fish. In carp, accumulation from water accounted for 75% of 60Co accumulated from both water and food; accumulation from water and food was additive. Depuration half-lives were 53 and 87 days for fish contaminated from food and water, respectively. In the case of an accidental release of 60Co into waterways, the implication is that effects would manifest themselves rapidly since the primary route of exposure is from water rather than food. Uptake of 60Co was very low in whitefish, with concentrations being highest in kidney and undetectable in muscle. Similarly, the uptake of 60Co from food was dependent on food type, the transfer factor was very low, approximately 0.01, and no long-term bioaccumulation of the radionuclide occurred.

Concentration factors have also been reported for various other aquatic organisms. Freshwater mollusks have concentration factors of 100-14,000 (~1-300 in soft tissue). Much of the cobalt taken up by mollusks and crustaceans from water or sediment is adsorbed to the shell or exoskeleton; very little cobalt is generally accumulated in the edible parts. A concentration factor for 60Co of 265 mL/g (wet weight) was determined for Daphnia magna in laboratory studies. The rapid decrease in radioactivity during the depuration phase indicated that the adsorption to the surface was the major contamination process. However, the digestive glands of crustaceans, which are sometimes eaten by humans, may accumulate high levels of 60Co. The shell accounted for more than half of the body burden. Among the soft tissue, the gills and viscera had the highest concentrations factors and the muscle had the lowest.

In mussels, absorption efficiencies and lower efflux rates were obtained for cobalamins than for inorganic cobalt, suggesting that it is a more bioavailable form of cobalt.

Vitamin B12, which contains cobalt, is synthesized by 58 species of seven genera of bacteria as well as blue-green algae and actinomycetes (mold-like bacteria). Consequently, vitamin B12 levels in marine water range from very low levels in some open ocean water to much higher levels in some coastal waters. Freshwater environments have comparable levels of vitamin B12. The high level of cobalamins in coastal water appears to be related to the occurrence of macrophytes in these areas with their high concentrations of vitamin B12. Cobalamins are released into the water when the organisms die. Some female birds sequester metals into their eggs under certain conditions, a phenomenon that may jeopardize the developing embryos.

BB
2.4-PENTANEDIONE:
■ log Pow (Verschueren 1983): 1.9/2.25
■ Algae IC50 (72hr.) (mg/l): 2.7-8.5
■ BCF=105: 0.7, 0.75
■ Water solubility (g/l): 166000
■ log Kow (Prager 1995): 0.14
■ log Pow (Verschueren 1983): 1.90/2.25
■ BOD5: 5.60%
■ BOD20: 69.6
■ Harmful to aquatic organisms.

Ecotoxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
<th>Bioaccumulation</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-pentanediione</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
<td>HIGH</td>
</tr>
</tbody>
</table>
Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions
All waste must be handled in accordance with local, state and federal regulations.

- Puncture containers to prevent re-use and bury at an authorized landfill.
- Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.
- A Hierarchy of Controls seems to be common - the user should investigate:
 - Reduction
 - Reuse
 - Recycling
 - Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

For small quantities:
- Dissolve the material (in water or acid solution as appropriate) or convert it to a water soluble state with appropriate oxidizing agent.
- Precipitate as the sulfide, adjusting the pH to neutral to complete the precipitation.
- Filter off sulfide solids for recovery or disposal to approved landfill.
- Destroy excess sulfide in solution with, for example, sodium hypochlorite, neutralize, and flush to sewer (subject to local regulation).
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed landfill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

REGULATIONS

Ingredient CAS % de minimus concentration
- cobalt(II) acetylacetonate 14024-48-7 (inorganic compounds: 0.1; organic compounds: 1.0)

Ingredient CAS RQ
- cobalt(II) acetylacetonate 14024-48-7 **

cobalt(II) acetylacetonate (CAS: 14024-48-7,123334-29-2) is found on the following regulatory lists;
 "Canada Non-Domestic Substances List (NDSL)", "US Toxic Substances Control Act (TSCA) - Inventory"

Regulations for ingredients

2,4-pentanediione (CAS: 123-54-6) is found on the following regulatory lists;
 "Canada Domestic Substances List (DSL)", "Canada Ingredient Disclosure List (SOR/88-64)", "International Council of Chemical Associations (ICCA) - High Production Volume List", "OECD Representative List of High Production Volume (HPV) Chemicals", "US - Massachusetts Oil & Hazardous Material List", "US - New Jersey Right to Know Hazardous Substances", "US ACGIH Threshold Limit Values (TLV) - Notice of Intended Changes", "US DOE Temporary Emergency Exposure Limits (TEELs)", "US EPA High Production Volume Program Chemical List", "US FDA Indirect Food Additives: Adhesives and Components of Coatings - Substances for Use Only as Components of Adhesives - Adhesives", "US Toxic Substances Control Act (TSCA) - Inventory", "US TSCA Section 12(b) - List of Chemical Substances Subject to Export Notification Requirements", "US TSCA Section 5(a)(2) - Significant New Use Rules (SNURs)", "US TSCA Section 8 (a) - Preliminary Assessment Information Rules (PAIR) - Reporting List", "US TSCA Section 8 (d) - Health and Safety Data Reporting"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE
- Cumulative effects may result following exposure*.
- * (limited evidence).

Ingredients with multiple CAS Nos
Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios, Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Sep-3-2009
Print Date: Oct-5-2010