Material Safety Data Sheet

Ferric Sulfate n-Hydrate Reagent

sc-269198

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Ferric Sulfate n-Hydrate Reagent

STATEMENT OF HAZARDOUS NATURE

NFPA

SUPPLIER
Company: Santa Cruz Biotechnology, Inc.
Address:
2145 Delaware Ave
Santa Cruz, CA 95060
Telephone: 800.457.3801 or 831.457.3800
Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305
Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE
Preparation of iron alums, iron salts and pigments. As a floculent in water purification and sewerage treatment; in etching aluminium, in pickling stainless steel and copper; and in soil conditioners. As a mordant in textile dyeing and calico printing; a polymerisation catalyst; in chelated iron products and as a chemical intermediate. Reagent

SYNONYMS
Fe2-H18-O21-S3, Fe2(SO4)3.9H2O, "diron tris(sulfate)", "iron (III) sulfate", "iron persulphate persulfate", "sulfuric acid, iron(3+) salt (3:2) hydrate", "iron (III) sulfate sulphate", nonahydrate, enneahydrate, "ferric sulphate sulfate"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW
EMERGENCY OVERVIEW

RISK
Harmful if swallowed.
Irritating to eyes, respiratory system and skin.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- Sulfates are not well absorbed orally, but can cause diarrhea.
- Iron poisoning results in pain in the upper abdomen and vomiting, and is followed hours later by shock, in severe cases coma and death. Iron toxicity increases in proportion to their solubility in the gastrointestinal tract. There is often vomiting of blood due to dilation of capillaries and bleeding from the walls of the gastrointestinal system. A watery diarrhea can occur, often leading to cardiovascular collapse after fluid and mineral loss and there can be a relapse marked by profound metabolic acidosis after several hours of apparent recovery. There may also be liver damage. Symptoms of poisoning include metallic taste, restlessness, lethargy, loss of muscle tone, coma, pallor or cyanosis (blue-gray skin), fast and weak pulse, low blood pressure, hyperventilation, shock, vasomotor instability and cardiovascular collapse. There may be inflammation, swelling and bleeding from the lungs, convulsions, jaundice, low blood sugar, multiple blood clotting defects, kidney damage with absence of urine, damage to the pancreas, vascular damage, blood loss, shock and vascular collapse. Survivor can display stomach scarring, obstruction or narrowing of digestive tract sphincters, liver hardening or nervous system effects.

EYE
- This material can cause eye irritation and damage in some persons.

SKIN
- This material can cause inflammation of the skin on contact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects.

INHALED
- The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
- Not normally a hazard due to non-volatile nature of product.

CHRONIC HEALTH EFFECTS
- Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Overexposure to respirable dust may cause coughing, wheezing, difficulty in breathing and impaired lung function. Chronic symptoms may include decreased vital lung capacity, chest infections.

Repeated exposures, in an occupational setting, to high levels of fine-divided dusts may produce a condition known as pneumoconiosis which is the lodgement of any inhaled dusts in the lung irrespective of the effect. This is particularly true when a significant number of particles less than 0.5 microns (1/50,000 inch), are present. Lung shadows are seen in the X-ray. Symptoms of pneumoconiosis may include a progressive dry cough, shortness of breath on exertion (exertional dyspnea), increased chest expansion, weakness and weight loss. As the disease progresses the cough produces a stringy mucous, vital capacity decreases further and shortness of breath becomes more severe. Other signs or symptoms include altered breath sounds, diminished lung capacity, diminished oxygen uptake during exercise, emphysema and pneumothorax (air in lung cavity) as a rare complication.

Removing workers from possibility of further exposure to dust generally leads to halting the progress of the lung abnormalities. Where worker-exposure potential is high, periodic examinations with emphasis on lung dysfunctions should be undertaken.

Dust inhalation over an extended number of years may produce pneumoconiosis. Pneumoconiosis is the accumulation of dusts in the lungs and the tissue reaction in its presence. It is further classified as being of noncollagenous or collagenous types. Noncollagenous pneumoconiosis, the benign form, is identified by minimal stromal reaction, consists mainly of reticulin fibres, an intact alveolar architecture and is potentially reversible.

Chronic excessive intake of iron have been associated with damage to the liver and pancreas. People with a genetic disposition to poor control over iron are at an increased risk. Iron overload in men may lead to diabetes, joint inflammation, liver cancer, heart irregularities...
and problems with other organs.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ferric sulfate</td>
<td>10028-22-5</td>
<td>>99</td>
</tr>
</tbody>
</table>

(Note: Commercial form is usually hydrated.)

Section 4 - FIRST AID MEASURES

SWALLOWED
- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
- Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
 - For advice, contact a Poisons Information Center or a doctor.
 - Urgent hospital treatment is likely to be needed.
 - If conscious, give water to drink.
 - INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- NOTE: Wear a protective glove when inducing vomiting by mechanical means.
 - In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
 - If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
 - If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

EYE
- If this product comes in contact with the eyes:
 - Wash out immediately with fresh running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - If pain persists or recurs seek medical attention.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN
- If skin contact occurs:
 - Immediately remove all contaminated clothing, including footwear
 - Flush skin and hair with running water (and soap if available).
 - Seek medical attention in event of irritation.

INHALED
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN
- For acute or short term repeated exposures to iron and its derivatives:
 - Always treat symptoms rather than history.
 - In general, however, toxic doses exceed 20mg/kg of ingested material (as elemental iron) with lethal doses exceeding 180 mg/kg.
 - Control of iron stores depend on variation in absorption rather than excretion. Absorption occurs through aspiration, ingestion and burned skin.
 - Hepatic damage may progress to failure with hypoprothrombinemia and hypoglycemia. Hepatorenal syndrome may occur.
 - Iron intoxication may also result in decreased cardiac output and increased cardiac pooling which subsequently produces hypotension.
 - Serum iron should be analyzed in symptomatic patients. Serum iron levels (2-4hrs postigestion) greater that 100 ug/dL indicate poisoning with levels, in excess of 350 ug/dL, being potentially serious. Emesis or lavage (for obtunded patients with no gag reflex)are the usual means of decontamination.
 - Activated charcoal does not effectively bind iron.
 - Catharsis (using sodium sulfate or magnesium sulfate) may only be used if the patient already has diarrhea.
 - Deferoxamine is a specific chelator of ferric (3+) iron and is currently the antidote of choice. It should be administered parentally.
[Ellenhorn and Barceloux: Medical Toxicology].
Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHg): Negligible.
Upper Explosive Limit (%): Not applicable
Specific Gravity (water=1): 2.1
Lower Explosive Limit (%): Not applicable

EXTINGUISHING MEDIA
- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

FIRE FIGHTING
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves for fire only.
- Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.
- Do not approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
- Non combustible.
- Not considered to be a significant fire risk, however containers may burn.
- Decomposition may produce toxic fumes of: sulfur oxides (SOx), metal oxides.
- May emit poisonous fumes.
- May emit corrosive fumes.

FIRE INCOMPATIBILITY
- None known.

PERSONAL PROTECTION
Glasses: Chemical goggles.
Gloves:
Respirator: Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS
- Moderate hazard.
- CAUTION: Advise personnel in area.
- Alert Emergency Responders and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

From IERG (Canada/Australia)
Isolation Distance -
Downwind Protection Distance -
FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.

5 Guide No guide found. is taken from the US DOT emergency response guide book.

6 IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

RECOMMENDED STORAGE METHODS

- DO NOT use mild steel or galvanised containers
- DO NOT use aluminium, galvanised or tin-plated containers
- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS
Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Peak ppm</th>
<th>Peak mg/m³</th>
<th>TWA F/CC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada - British Columbia Occupational Exposure Limits</td>
<td>ferric sulfate (Iron salts - soluble, as Fe)</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Ontario Occupational Exposure Limits</td>
<td>ferric sulfate (Iron salts, water-soluble (as iron))</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Alberta Occupational Exposure Limits</td>
<td>ferric sulfate (Iron salts, soluble, as Fe)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US ACGIH Threshold Limit Values (TLV)</td>
<td>ferric sulfate (Iron salts - soluble (as Fe))</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TLV Basis: upper respiratory tract & skin irritation</td>
</tr>
<tr>
<td>US NIOSH Recommended Exposure Limits (RELs)</td>
<td>ferric sulfate (Iron salts, soluble, as Fe)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants</td>
<td>ferric sulfate (Iron salts (soluble) (as Fe))</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants</td>
<td>ferric sulfate (Iron salts (soluble) (as Fe))</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Minnesota Permissible Exposure Limits (PELs)</td>
<td>ferric sulfate (Iron salts (soluble)(as Fe))</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - California Permissible Exposure Limits for Chemical Contaminants</td>
<td>ferric sulfate (Iron salts, soluble, as Fe)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Quebec Permissible Exposure Values for Airborne Contaminant Substances (English)</td>
<td>ferric sulfate (Iron salts, soluble (as Fe))</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Hawaii Air Contaminant Limits</td>
<td>ferric sulfate (Iron salts (soluble) (as Fe))</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(CAS (Varies with compound))</td>
</tr>
<tr>
<td>US - Alaska Limits for Air Contaminants</td>
<td>ferric sulfate (Iron salts (soluble) (as Fe))</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits</td>
<td>ferric sulfate (Iron salts, soluble, (as Fe))</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances</td>
<td>ferric sulfate (Iron salts, soluble (as Fe))</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
US - Washington Permissible exposure limits of air contaminants

Canada - Nova Scotia Occupational Exposure Limits	ferric sulfate (Iron salts - soluble (as Fe))	1	3
Canada - Prince Edward Island Occupational Exposure Limits	ferric sulfate (Iron salts - soluble (as Fe))	1	
Canada - Northwest Territories Occupational Exposure Limits	ferric sulfate (Iron salts, soluble (as Fe))	1	2
US - Michigan Exposure Limits for Air Contaminants	ferric sulfate (Iron salts (soluble) (as Fe))	1	
US - Oregon Permissible Exposure Limits (Z-1)	ferric sulfate (Iron salts, soluble, as Fe)	1	

MATERIAL DATA

FERRIC SULFATE:

- The recommended TLV is thought to reduce the likelihood of respiratory irritation and skin irritation from exposure to aerosols and mists of soluble iron salts.

PERSONAL PROTECTION

- **EYE**
 - Safety glasses with side shields.
 - Chemical goggles.
 - Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

- **HANDS/FEET**
 - Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
 - frequency and duration of contact,
 - chemical resistance of glove material,
 - glove thickness and dexterity
 - Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
 - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
 - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
 - Contaminated gloves should be replaced.

- Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
 - Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.
 - polychloroprene
 - nitrile rubber
 - butyl rubber
 - fluorocautchouc
 - polyvinyl chloride
 - Gloves should be examined for wear and/or degradation constantly.

- **OTHER**
 -
OVERALLS.
P.V.C. APRON.
BARRIER CREAM.
SKIN CLEANSING CREAM.
EYE WASH UNIT.

RESPIRATOR

Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.

The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).

Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory. These may be government mandated or vendor recommended.

Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.

Use approved positive flow mask if significant quantities of dust becomes airborne.

Try to avoid creating dust conditions.

RESPIRATOR

<table>
<thead>
<tr>
<th>Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x PEL</td>
<td>P1</td>
<td>-</td>
<td>PAPR-P1</td>
</tr>
<tr>
<td></td>
<td>Air-line*</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>50 x PEL</td>
<td>Air-line**</td>
<td>P2</td>
<td>PAPR-P2</td>
</tr>
<tr>
<td>100 x PEL</td>
<td>-</td>
<td>P3</td>
<td>-</td>
</tr>
<tr>
<td>100+ x PEL</td>
<td>-</td>
<td>Air-line*</td>
<td>-</td>
</tr>
</tbody>
</table>

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.
Class 2 medium absorption capacity filters.
Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.
Type AX for use against low boiling point organic compounds (less than 65°C).
Type B for use against certain inorganic gases and other acid gases and vapors.
Type E for use against sulfur dioxide and other acid gases and vapors.
Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.
Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.
Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply.

Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.

If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:

(a): particle dust respirators, if necessary, combined with an absorption cartridge;
(b): filter respirators with absorption cartridge or canister of the right type;
(c): fresh-air hoods or masks

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

<table>
<thead>
<tr>
<th>Type of Contaminant</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>1-2.5 m/s (200-500 f/min.)</td>
</tr>
<tr>
<td>Grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion)</td>
<td>2.5-10 m/s (500-2000 f/min.)</td>
</tr>
</tbody>
</table>
Within each range the appropriate value depends on:

<table>
<thead>
<tr>
<th>Lower end of the range</th>
<th>Upper end of the range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Room air currents minimal or favorable to capture</td>
<td>1: Disturbing room air currents</td>
</tr>
<tr>
<td>2: Contaminants of low toxicity or of nuisance value only.</td>
<td>2: Contaminants of high toxicity</td>
</tr>
<tr>
<td>3: Intermittent, low production.</td>
<td>3: High production, heavy use</td>
</tr>
<tr>
<td>4: Large hood or large air mass in motion</td>
<td>4: Small hood-local control only</td>
</tr>
</tbody>
</table>

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 ft/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES
Solid.
Mixes with water.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Divided solid</td>
</tr>
<tr>
<td>Molecular Weight</td>
<td>562 nonahydrate</td>
</tr>
<tr>
<td>Melting Range (°F)</td>
<td>347 loses water</td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>Not available.</td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>896</td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Viscosity</td>
<td>Not Applicable.</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>Miscible</td>
</tr>
<tr>
<td>pH (1% solution)</td>
<td>Not available.</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Vapour Pressure (mmHG)</td>
<td>Negligible.</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>2.1</td>
</tr>
<tr>
<td>Relative Vapor Density (air=1)</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Evaporation Rate</td>
<td>Not applicable.</td>
</tr>
</tbody>
</table>

APPEARANCE
Grey to tan or light greenish/yellow powder or crystals. Hygroscopic. Commercial product contains about 20% water and is yellow in colour. Odourless. Soluble in water. Sparingly soluble in alcohol; insoluble in acetone, ethyl acetate, H2SO4 (hydrogen sulphate), and NH3 (ammonia).

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY
- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY
- WARNING: Avoid or control reaction with peroxides. All transition metal peroxides should be considered as potentially explosive. For example transition metal complexes of alkyl hydroperoxides may decompose explosively.
- The π-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono-or poly-fluorobenzene show extreme sensitivity to heat and are explosive.
- Avoid reaction with borohydrides or cyanoborohydrides

Metals and their oxides or salts may react violently with chlorine trifluoride. Chlorine trifluoride is a hypergolic oxidizer. It ignites on contact (without external source of heat or ignition) with recognized fuels - contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce ignition. The state of subdivision may affect the results.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

FERRIC SULFATE

TOXICITY AND IRRITATION
FERRIC SULFATE:
- Environmental fate:
 - Data from tap water studies with human volunteers indicate that sulfates produce a laxative effect at concentrations of 1000 - 1200 mg/litre, but no increase in diarrhoea, dehydration or weight loss. The presence of sulfate in drinking-water can also result in a noticeable taste; the lowest taste threshold concentration for sulfate is approximately 250 mg/litre as the sodium salt. Sulfate may also contribute to the corrosion of distribution systems. No health-based guideline value for sulfate in drinking water is proposed. However, there is an increasing likelihood of complaints arising from a noticeable taste as concentrations in water increase above 500 mg/litre.
 - Sulfates are removed from the air by both dry and wet deposition processes. Wet deposition processes including rain-out (a process that occurs within the clouds) and washout (removal by precipitation below the clouds) contribute to the removal of sulfate from the atmosphere.
 - In soil, the inorganic sulfates can adsorb to soil particles or leach into surface water and groundwater. Sulfates can be taken up by plants and be incorporated into the parenchyma of the plant.
 - Sulfate in water can also be reduced by sulfate bacteria (Thiobacillus) which use them as a source of energy.
 - In anaerobic environments sulfate is biologically reduced to (hydrogen) sulfide by sulfate reducing bacteria, or incorporated into living organisms as source of sulfur, and thereby included in the sulfur cycle. Sodium sulfate is not reactive in aqueous solution at room temperature. Sodium sulfate will completely dissolve, ionise and distribute across the entire planetary "aquasphere". Some sulfates may eventually be deposited, the majority of sulfates participate in the sulfur cycle in which natural and industrial sodium sulfate are not distinguishable.
 - The BCF of sodium sulfate is very low and therefore significant bioconcentration is not expected. Sodium and sulfate ions are essential to all living organisms and their intracellular and extracellular concentrations are actively regulated. However some plants (e.g. corn and Kochia Scoparia), are capable of accumulating sulfate to concentrations that are potentially toxic to ruminants.

Ecotoxicity:
- Algae were shown to be the most sensitive to sodium sulfate; EC50 120 h = 1.900 mg/l. For invertebrates (Daphnia magna) the EC50 48 h = 4.580 mg/l and fish appeared to be the least sensitive with a LC50 96h = 7.960 mg/l for Pimephales promelas. Activated sludge showed a very low sensitivity to sodium sulfate. There was no effect up to 8 g/l. Sodium sulfate is not very toxic to terrestrial plants. Picea banksiana was the most sensitive species, an effect was seen at 1.4 g/l. Sediment dwelling organisms were not very sensitive either, with an LC50 96h = 660 mg/l for Trycorythus sp. Overall it can be concluded that sodium sulfate has no acute adverse effect on aquatic and sediment dwelling organisms. Toxicity to terrestrial plants is also low.
- No data were found for long term toxicity. The acute studies all show a toxicity of sodium sulfate higher than 100 mg/l, no bioaccumulation is expected.
- DO NOT discharge into sewer or waterways.

GESAMP/EHS COMPOSITE LIST - GESAMP Hazard Profiles

| Name / Cas No / RTECS No | EHS | TRN | A1a | A1b | A1 | A2 | B1 | B2 | C1 | C2 | C3 | D1 | D2 | D3 | E1 | E2 | E3 |
|---------------------------|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|----|----|
| E1:_INTER | 338 | 592 | 0 | 0 | Ino| Ino| (2) | N1 | 1 | (1) | (3) | (3) | D | 3 |
| F~/-CAS:10028 - 22-5 / | | | | | | | | | | | | | | | |

Legend: EHS=EHS Number (EHS=GESAMP Working Group on the Evaluation of the Hazards of Harmful Substances Carried by Ships) NRT=Net Register Tonnage, A1a=Bioaccumulation log Pow, A1b=Bioaccumulation BCF, A1=Bioaccumulation, A2=Biodegradation, B1=Acute aquatic toxicity LC50/EC50 (mg/l), B2=Chronic aquatic toxicity NOEC (mg/l), C1=Acute mammalian oral toxicity LD50 (mg/kg),
Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions
All waste must be handled in accordance with local, state and federal regulations.
| Puncture containers to prevent re-use and bury at an authorized landfill.
Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.
A Hierarchy of Controls seems to be common - the user should investigate:
● Reduction
● Reuse
● Recycling
● Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.
● Recycle wherever possible or consult manufacturer for recycling options.
● Consult Waste Management Authority for disposal.
● Bury residue in an authorized landfill.
● Recycle containers where possible, or dispose of in an authorized landfill.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

REGULATIONS
ferric sulfate (CAS: 10028-22-5,15244-10-7) is found on the following regulatory lists:

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE
■ Cumulative effects may result following exposure*.
* (limited evidence).

Ingredients with multiple CAS Nos
Ingredient Name CAS
ferric sulfate 10028-22-5, 15244-10-7

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.
A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Sep-13-2009
Print Date: Sep-8-2010