# MMP-20 (T-16): sc-26926



The Power to Question

### **BACKGROUND**

Matrix metalloproteinases (MMPs) are highly homologous Zn²+ endopeptidases involved in extracellular matrix (ECM) breakdown. MMP-20 (enamelysin) is involved in the degradation of various components of the ECM during development, hemostasis and pathological conditions. The domain organization of MMP-20 is similar to other MMPs, including a signal peptide, a prodomain with the conserved motif PRCGVPD involved in maintaining enzyme latency, a catalytic domain with a Zn-binding site and a COOH-terminal fragment similar to the sequence of hemopexin. MMP-20 is expressed during the early through middle stages of enamel development, at which time it likely hydrolyzes Amelogenin, a major protein component of the enamel matrix. The expression pattern of MMP-20 in the enamel organ indicates that it may be involved in the turnover of ECM proteins during tooth development and enamel formation. Human MMP-20 maps to chromosome 11q22.2, clustered to at least seven other members of the MMP gene family.

# **REFERENCES**

- Birkedal-Hansen, H., et al. 1993. Matrix metalloproteinases: a review. Crit. Rev. Oral Biol. Med. 2: 197-250.
- Llano, E., et al. 1997. Identification and structural and functional characterization of human enamelysin (MMP-20). Biochemistry 49: 15101-15108.
- Stracke, J.O., et al. 2000. Matrix metalloproteinases 19 and 20 cleave aggrecan and cartilage oligomeric matrix protein (COMP). FEBS Lett. 1-2: 57-56

# CHROMOSOMAL LOCATION

Genetic locus: MMP20 (human) mapping to 11q22.2; Mmp20 (mouse) mapping to 9 A1.

## **SOURCE**

MMP-20 (T-16) is an affinity purified goat polyclonal antibody raised against a peptide mapping within an internal region of MMP-20 of human origin.

## **PRODUCT**

Each vial contains 200  $\mu g$  lgG in 1.0 ml of PBS with <0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-26926 P, (100  $\mu$ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

## **STORAGE**

Store at 4° C, \*\*DO NOT FREEZE\*\*. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

## **RESEARCH USE**

For research use only, not for use in diagnostic procedures.

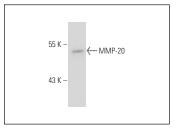
#### **PROTOCOLS**

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

### **APPLICATIONS**

MMP-20 (T-16) is recommended for detection of precursor and mature MMP-20 of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2  $\mu$ g per 100-500  $\mu$ g of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for MMP-20 siRNA (h): sc-41561, MMP-20 siRNA (m): sc-41562, MMP-20 shRNA Plasmid (h): sc-41561-SH, MMP-20 shRNA Plasmid (m): sc-41562-SH, MMP-20 shRNA (h) Lentiviral Particles: sc-41561-V and MMP-20 shRNA (m) Lentiviral Particles: sc-41562-V.


Molecular Weight of MMP-20: 54 kDa.

Positive Controls: KNRK whole cell lysate: sc-2214.

## **RECOMMENDED SECONDARY REAGENTS**

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey anti-goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunoprecipitation: use Protein A/G PLUS-Agarose: sc-2003 (0.5 ml agarose/2.0 ml). 3) Immunofluorescence: use donkey anti-goat IgG-FITC: sc-2024 (dilution range: 1:100-1:400) or donkey anti-goat IgG-TR: sc-2783 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941.

## **DATA**



MMP-20 (T-16): sc-26926. Western blot analysis of MMP-20 expression in KNRK whole cell lysate.

### **SELECT PRODUCT CITATIONS**

- Hu, B., et al. 2006. Bone marrow cells can give rise to ameloblast-like cells.
  J. Dent. Res. 85: 416-421.
- Lee, H.K., et al. 2010. The odontogenic ameloblast-associated protein (ODAM) cooperates with RUNX2 and modulates enamel mineralization via regulation of MMP-20. J. Cell. Biochem. 111: 755-767.
- 3. Ozeki, N., et al. 2014. Differentiation of human skeletal muscle stem cells into odontoblasts is dependent on induction of  $\alpha 1$  integrin expression. J. Biol. Chem. 289: 14380-14391.