LSD1 (B-9): sc-271720

The Power to Question

BACKGROUND

Histone methylation regulates chromatin structure and transcription and maintains an epigenetic state of the cell. Histone methylation is dynamically regulated by histone methylases and demethylases. Lysine-specific histone demethylase 1 (LSD1), also designated BHC110, is a flavin-dependent amine oxidase which catalyzes the removal of one or two methyl groups from the methyl-lysine-4 side chain of Histone H3. The LSD1 protein contains a SWIRM domain, a FAD-binding motif and an amine oxidase domain. Association with CoREST, a SANT domain-containing corepressor, positively regulates LSD1. CoREST mediates the demethylation ability of LSD1 and protects it from proteasomal degradation *in vivo*. BCH80, a PHD domain-containing protein, inhibits activity of LSD1/CoREST mediated demethylation. The LSD1 protein also co-localizes with the androgen receptor in human prostate tumor cells and in unaffected prostate cells, stimulating androgen-receptor-dependent transcription.

REFERENCES

- Shi, Y., et al. 2004. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119: 941-953.
- 2. Forneris, F., et al. 2005. Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process. FEBS Lett. 579: 2203-2207.
- 3. Lee, M.G., et al. 2005. An essential role for CoREST in nucleosomal Histone 3 lysine 4 demethylation. Nature 437: 432-435.

CHROMOSOMAL LOCATION

Genetic locus: KDM1A (human) mapping to 1p36.12; Kdm1a (mouse) mapping to 4 D3.

SOURCE

LSD1 (B-9) is a mouse monoclonal antibody raised against amino acids 581-800 mapping near the C-terminus of LSD1 of human origin.

PRODUCT

Each vial contains 200 μ g lgG₁ kappa light chain in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin. Also available as TransCruz reagent for Gel Supershift and ChIP applications, sc-271720 X, 200 μ g/0.1 ml.

LSD1 (B-9) is available conjugated to agarose (sc-271720 AC), 500 $\mu g/0.25$ ml agarose in 1 ml, for IP; to HRP (sc-271720 HRP), 200 $\mu g/ml$, for WB, IHC(P) and ELISA; to either phycoerythrin (sc-271720 PE), fluorescein (sc-271720 FITC), Alexa Fluor® 488 (sc-271720 AF488), Alexa Fluor® 546 (sc-271720 AF546), Alexa Fluor® 594 (sc-271720 AF594) or Alexa Fluor® 647 (sc-271720 AF647), 200 $\mu g/ml$, for WB (RGB), IF, IHC(P) and FCM; and to either Alexa Fluor® 680 (sc-271720 AF680) or Alexa Fluor® 790 (sc-271720 AF790), 200 $\mu g/ml$, for Near-Infrared (NIR) WB, IF and FCM.

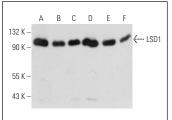
Alexa Fluor® is a trademark of Molecular Probes, Inc., Oregon, USA

STORAGE

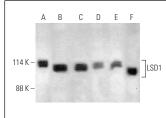
Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

APPLICATIONS

LSD1 (B-9) is recommended for detection of LSD1 of mouse, rat and human origin by Western Blotting (starting dilution 1:100, dilution range 1:100-1:1000), immunoprecipitation [1-2 μ g per 100-500 μ g of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).


Suitable for use as control antibody for LSD1 siRNA (h): sc-60970, LSD1 siRNA (m): sc-60971, LSD1 siRNA (r): sc-156072, LSD1 shRNA Plasmid (h): sc-60970-SH, LSD1 shRNA Plasmid (m): sc-60971-SH, LSD1 shRNA Plasmid (r): sc-156072-SH, LSD1 shRNA (h) Lentiviral Particles: sc-60970-V, LSD1 shRNA (m) Lentiviral Particles: sc-60971-V and LSD1 shRNA (r) Lentiviral Particles: sc-156072-V.

LSD1 (B-9) X TransCruz antibody is recommended for Gel Supershift and ChIP applications.


Molecular Weight of LSD1: 107 kDa.

Positive Controls: HeLa whole cell lysate: sc-2200, Jurkat nuclear extract: sc-2132 or SK-BR-3 nuclear extract: sc-2134.

DATA

LSD1 (B-9) HRP: sc-271720 HRP. Direct western blot analysis of LSD1 expression in Jurkat (A), SK-BR-3 (B), K-562 (C) and PC-3 (D) nuclear extracts and SW480 (E) and Neuro-2A (F) whole cell lysates.

SELECT PRODUCT CITATIONS

- 1. El Omari, K., et al. 2013. Structural basis for LMO2-driven recruitment of the SCL:E47bHLH heterodimer to hematopoietic-specific transcriptional targets. Cell Rep. 4: 135-147.
- 2. Jeong, O.S., et al. 2016. Long noncoding RNA linc00598 regulates CCND2 transcription and modulates the G_1 checkpoint. Sci. Rep. 6: 32172.
- 3. Jung, H., et al. 2017. Regulatory role of G9a and LSD1 in the transcription of glfactory receptors during leukaemia cell differentiation. Sci. Rep. 7: 46182.
- Haines, R.R., et al. 2019. LSD1 cooperates with noncanonical NFκB signaling to regulate marginal zone B cell development. J. Immunol. 203: 1867-1881.
- 5. Bally, A.P.R., et al. 2020. PD-1 expression during acute infection is repressed through an LSD1-Blimp-1 axis. J. Immunol. 204: 449-458.

RESEARCH USE

For research use only, not for use in diagnostic procedures.