SANTA CRUZ BIOTECHNOLOGY, INC.

SPTLC2 (C-20): sc-27500

BACKGROUND

SPTLC1 (serine palmitoyltransferase 1, also known as LCB1) and SPTLC2 (serine palmitoyltransferase 2, LCB2) together catalyze sphingolipid biosynthesis by converting L-serine and palmitoyl-CoA to 3-oxosphinganine, utilizing pyridoxal 5'-phosphate as a cofactor. Increases in transepidermal water loss trigger upregulation of serine palmitoyltransferase mRNA expression in humans. Deficiencies in wildtype SPTLC1 and SPTLC2 can lead to hereditary sensory neuropathy, atopic eczema and psoriasis.

REFERENCES

- Weiss, B., et al. 1997. Human and murine serine-palmitoyl-CoA transferase—cloning, expression and characterization of the key enzyme in sphingolipid synthesis. Eur. J. Biochem. 249: 239-247.
- Uhlinger, D.J., et al. 2001. Increased expression of serine palmitoyltransferase (SPT) in balloon-injured rat carotid artery. Thromb. Haemost. 86: 1320-1326.
- Stachowitz, S., et al. 2002. Permeability barrier disruption increases the level of serine palmitoyltransferase in human epidermis. J. Invest. Dermatol. 119: 1048-1052.
- 4. Batheja, A.D., et al. 2003. Characterization of serine palmitoyltransferase in normal human tissues. J. Histochem. Cytochem. 51: 687-696.
- Carton, J.M., et al. 2003. Enhanced serine palmitoyltransferase expression in proliferating fibroblasts, transformed cell lines, and human tumors. J. Histochem. Cytochem. 51: 715-726.
- Dedov, V.N., et al. 2004. Activity of partially inhibited serine palmitoyltransferase is sufficient for normal sphingolipid metabolism and viability of HSN1 patient cells. Biochim. Biophys. Acta 1688: 168-175.

CHROMOSOMAL LOCATION

Genetic locus: SPTLC2 (human) mapping to 14q24.3; Sptlc2 (mouse) mapping to 12 D2.

SOURCE

SPTLC2 (C-20) is an affinity purified goat polyclonal antibody raised against a peptide mapping at the C-terminus of SPTLC2 of human origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-27500 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

STORAGE

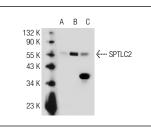
Store at 4° C, **D0 NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

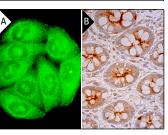
RESEARCH USE

For research use only, not for use in diagnostic procedures.

APPLICATIONS

SPTLC2 (C-20) is recommended for detection of SPTLC2 of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500), immunohistochemistry (including paraffin-embedded sections) (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).


SPTLC2 (C-20) is also recommended for detection of SPTLC2 in additional species, including equine, canine, bovine, porcine and avian.


Suitable for use as control antibody for SPTLC2 siRNA (h): sc-106811, SPTLC2 siRNA (m): sc-77377, SPTLC2 shRNA Plasmid (h): sc-106811-SH, SPTLC2 shRNA Plasmid (m): sc-77377-SH, SPTLC2 shRNA (h) Lentiviral Particles: sc-106811-V and SPTLC2 shRNA (m) Lentiviral Particles: sc-77377-V.

Molecular Weight of SPTLC2: 65 kDa.

Positive Controls: mouse brain extract: sc-2253, SPTLC2 (h): 293T Lysate: sc-172454 or SW480 cell lysate: sc-2219.

DATA

SPTLC2 (C-20): sc-27500. Western blot analysis of SPTLC2 expression in non-transfected 293T: sc-117752 (**A**), human SPTLC2 transfected 293T: sc-172454 (**B**) and SW480 (**C**) whole cell lysates.

SPTLC2 (C-20): sc-27500. Immunofluorescence staining of methanol-fixed HeLa cells showing cytoplasmic localization (**A**). Immunoperoxidase staining of formalin fixed, paraffin-embedded human colon tissue showing cytoplasmic staining of qlandular cells (**B**).

SELECT PRODUCT CITATIONS

 Konstantynowicz-Nowicka, K., et al. 2015. New evidence for the role of ceramide in the development of hepatic Insulin resistance. PLoS ONE 10: e0116858.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

