Oxaloacetic Acid

sc-279934

Material Safety Data Sheet

Hazard Alert Code Key:

EXTREME | HIGH | MODERATE | LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Oxaloacetic Acid

STATEMENT OF HAZARDOUS NATURE

NFPA

MIN/Max=0
Low=1
Moderate=2
High=3
Extreme=4

SUPPLIER
Santa Cruz Biotechnology, Inc.
2145 Delaware Avenue
Santa Cruz, California 95060
800.457.3801 or 831.457.3800

EMERGENCY:
ChemWatch
Within the US & Canada: 877-715-9305
Outside the US & Canada: +800 2436 2255
(1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS
C4-H4-O5, "oxobutanedioic acid", "oxosuccinic acid", "2-oxosuccinic acid", "ketosuccinic acid", "hydroxylfumaric acid (trans-enol form)", "hydroxymaleic acid (cis-enol form)"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability:</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicity:</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact:</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Reactivity:</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chronic:</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

CANADIAN WHMIS SYMBOLS
EMERGENCY OVERVIEW

RISK
Causes severe burns.
Risk of serious damage to eyes.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
■ The material can produce severe chemical burns within the oral cavity and gastrointestinal tract following ingestion.
■ Ingestion of acidic corrosives may produce burns around and in the mouth, the throat and esophagus.
■ Accidental ingestion of the material may be damaging to the health of the individual.
■ Ingestion of low-molecular organic acid solutions may produce spontaneous hemorrhaging, production of blood clots, gastrointestinal damage and narrowing of the esophagus and stomach entry.

EYE
■ The material can produce severe chemical burns to the eye following direct contact. Vapors or mists may be extremely irritating.
■ If applied to the eyes, this material causes severe eye damage.
■ Direct eye contact with acid corrosives may produce pain, tears, sensitivity to light and burns. Mild burns of the epithelia generally recover rapidly and completely.
■ Solutions of low-molecular weight organic acids cause pain and injury to the eyes.

SKIN
■ The material can produce severe chemical burns following direct contact with the skin.
■ Skin contact with acidic corrosives may result in pain and burns; these may be deep with distinct edges and may heal slowly with the formation of scar tissue.
■ Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
■ Open cuts, abraded or irritated skin should not be exposed to this material.
■ Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
■ The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
■ Corrosive acids can cause irritation of the respiratory tract, with coughing, choking and mucous membrane damage. There may be dizziness, headache, nausea and weakness.
■ Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS
■ Repeated or prolonged exposure to acids may result in the erosion of teeth, swelling and or ulceration of mouth lining. Irritation of airways to lung, with cough, and inflammation of lung tissue often occurs.
■ Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.
Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.
Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>oxalacetic acid</td>
<td>328-42-7</td>
<td>>98</td>
</tr>
</tbody>
</table>

Section 4 - FIRST AID MEASURES

SWALLOWED
■ For advice, contact a Poisons Information Center or a doctor at once. • Urgent hospital treatment is likely to be needed.

EYE
■ If this product comes in contact with the eyes: • Immediately hold eyelids apart and flush the eye continuously with running water. • Ensure
complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN
- If skin or hair contact occurs: · Immediately flush body and clothes with large amounts of water, using safety shower if available. · Quickly remove all contaminated clothing, including footwear.

INHALED
- If fumes or combustion products are inhaled remove from contaminated area. · Lay patient down. Keep warm and rested. Inhalation of vapors or aerosols (mists, fumes) may cause lung edema. Corrosive substances may cause lung damage (e.g. <p>.

NOTES TO PHYSICIAN
- Treat symptomatically.
- For acute or short term repeated exposures to strong acids: · Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially. · Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling.

Section 5 - FIRE FIGHTING MEASURES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapour Pressure (mmHG)</td>
<td>Negligible</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>Not available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
</tr>
</tbody>
</table>

EXTINGUISHING MEDIA
- Water spray or fog.
- Foam.

FIRE FIGHTING
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
When any large container (including road and rail tankers) is involved in a fire, consider evacuation by 800 metres in all directions.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
- Combustible.
- Slight fire hazard when exposed to heat or flame.
Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), other pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY
- Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION
- **Glasses:** Full face- shield.
- **Gloves:**
- **Respirator:** Particulate dust filter.
- Acid vapour Type B cartridge/ canister.

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.
- Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material.
- Check regularly for spills and leaks.

MAJOR SPILLS
- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence
of an appropriate ignition source.
· Do NOT cut, drill, grind or weld such containers.
· In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS
- DO NOT use aluminum or galvanized containers.
- Check regularly for spills and leaks.
- Lined metal can, Lined metal pail/drum
- Plastic pail.
- For low viscosity materials
- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

STORAGE REQUIREMENTS
- Store in original containers.
- Keep containers securely sealed.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Peak ppm</th>
<th>Peak mg/m³</th>
<th>TWA F/CC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>US - California Permissible Exposure Limits for Chemical Contaminants</td>
<td>oxalacetic acid (Particulates not otherwise regulated Respirable fraction)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(n)</td>
</tr>
<tr>
<td>US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants</td>
<td>oxalacetic acid (Particulates not otherwise regulated Respirable fraction)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants</td>
<td>oxalacetic acid (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Michigan Exposure Limits for Air Contaminants</td>
<td>oxalacetic acid (Particulates not otherwise regulated, Respirable dust)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Prince Edward Island Occupational Exposure Limits</td>
<td>oxalacetic acid (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See Appendix B current TLV/BEI Book</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PERSONAL PROTECTION

![Personal Protection Equipment]

RESPIRATOR
- BR2
- BR4
Consult your EHS staff for recommendations

EYE
- Chemical goggles.
- Full face shield.

HANDS/FEET
- Elbow length PVC gloves.
Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
 - frequency and duration of contact,
 - chemical resistance of glove material,
 - glove thickness and
 - dexterity
Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
· When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
· When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
· Contaminated gloves should be replaced.
Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER
- Overalls.
- PVC Apron.

ENGINEERING CONTROLS
- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES
Mixes with water.
Corrosive.
Acid.

<table>
<thead>
<tr>
<th>State</th>
<th>DIVIDED SOLID</th>
<th>Molecular Weight</th>
<th>Melting Range (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>374 (decomposes)</td>
<td>132.07</td>
<td>374 (decomposes)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Boiling Range (°F)</th>
<th>Not available</th>
<th>Solubility in water (g/L)</th>
<th>Miscible</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flash Point (°F)</th>
<th>Not available</th>
<th>pH (1% solution)</th>
<th>Not available</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decomposition Temp (°F)</th>
<th>374</th>
<th>pH (as supplied)</th>
<th>Not applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoignition Temp (°F)</td>
<td>Not available</td>
<td>Vapour Pressure (mmHg)</td>
<td>Negligible</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available</td>
<td>Specific Gravity (water=1)</td>
<td>Not available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
<td>Relative Vapor Density (air=1)</td>
<td>>1</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Negligible</td>
<td>Evaporation Rate</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

APPEARANCE
White crystalline powder; mixes with water (0.1 g/ml). The trans-enol form (hydroxyfumaric acid) is soluble in water, ether and ethanol. Melting Point 184 deg C; K at 17 deg C 2.76 x 10⁻³. Can be converted to cis-enol form (hydroxymaleic acid) by dissolving in acid and reisolating quickly. Melting point 52; K 2.505 x 10⁻³. Soluble in ethanol, acetone ethyl acetate.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY
- Contact with alkaline material liberates heat.
- Presence of incompatible materials.
- Product is considered stable.

STORAGE INCOMPATIBILITY
- Reacts with mild steel, galvanized steel / zinc producing hydrogen gas which may form an explosive mixture with air.
- Avoid strong bases.
Segregate from alkalis, oxidizing agents and chemicals readily decomposed by acids, i.e. cyanides, sulfides, carbonates.
For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION
OXALACETIC ACID

TOXICITY AND IRRITATION

OXALACETIC ACID:

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

■ Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

No significant acute toxicological data identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

This material and its container must be disposed of as hazardous waste.

Ecotoxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
<th>Bioaccumulation</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>oxalacetic acid</td>
<td>LOW</td>
<td>LOW</td>
<td></td>
<td>HIGH</td>
</tr>
</tbody>
</table>

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions

A. General Product Information

Corrosivity characteristic: use EPA hazardous waste number D002 (waste code C)

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

· Reduction
· Reuse
· Recycling
· Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

· Recycle wherever possible.
· Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

Section 14 - TRANSPORTATION INFORMATION

DOT:

Symbols: None Hazard class or Division: 8
Identification Numbers: UN3261 PG: II
Label Codes: 8 Special provisions: IB8, IP2, IP4, T3, TP33
Packaging: Exceptions: 154 Packaging: Non- bulk: 212
Packaging: Exceptions: 154 Quantity limitations: 15 kg
Passenger aircraft/rail:
Quantity Limitations: Cargo 50 kg Vessel stowage: Location: B aircraft only:
Vessel stowage: Other: None
Hazardous materials descriptions and proper shipping names:
Corrosive solid, acidic, organic, n.o.s.

Air Transport IATA:

ICAO/IATA Class: 8 ICAO/IATA Subrisk: None
UN/ID Number: 3261 Packing Group: II
Special provisions: A3
Cargo Only
Packing Instructions: 816 Maximum Qty/Pack: 50 kg
Passenger and Cargo Passenger and Cargo
Packing Instructions: 814 Maximum Qty/Pack: 15 kg
Passenger and Cargo Limited Quantity Passenger and Cargo Limited Quantity
Packing Instructions: Y814 Maximum Qty/Pack: 5 kg
Shipping Name: CORROSIVE SOLID, ACIDIC, ORGANIC, N.O.S.
*(CONTAINS OXALACETIC ACID)

Maritime Transport IMDG:
IMDG Class: 8 IMDG Subrisk: None
UN Number: 3261 Packing Group: II
EMS Number: F-A , S-B Special provisions: 274
Limited Quantities: 1 kg
Shipping Name: CORROSIVE SOLID, ACIDIC, ORGANIC, N.O.S.

Section 15 - REGULATORY INFORMATION
oxalacetic acid (CAS: 328-42-7) is found on the following regulatory lists;
"Canada Domestic Substances List (DSL)","Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)","US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE
■ Ingestion may produce health damage*.
■ Cumulative effects may result following exposure*.
* (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use.
For additional technical information please call our toxicology department on +800 CHEMCALL.

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.
A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Feb-12-2009
Print Date: Nov-18-2010