G_{γ 2/3/4/7} (FL-71): sc-28589

The Power to Question

BACKGROUND

Heterotrimeric G proteins function to relay information from cell surface receptors to intracellular effectors. Each of a very broad range of receptors specifically detects an extracellular stimulus (α photon, pheromone, odorant, hormone or neurotransmitter) while the effectors (e.g., adenyl cyclase), which act to generate one or more intracellular messengers, are less numerous. In mammals, G protein α , β and γ polypeptides are encoded by at least 16, 4 and 7 genes, respectively. Most interest in G proteins has been focused on their α subunits, since these proteins bind and hydrolyze GTP and most obviously regulate the activity of the best studied effectors. Evidence, however, has established an important regulatory role for the $\beta\gamma$ subunits. It is becoming increasingly clear that different G protein complexes expressed in different tissues carry structurally distinct members of the γ as well as the α and β subunits and that preferential associations between members of subunit families increase G protein functional diversity.

REFERENCES

- 1. Conklin, B.R. and Bourne, H.R. 1993. Structural elements of G_{α} subunits that interact with $G_{\beta\gamma}$ receptors, and effectors. Cell 73: 631-641.
- Kleuss, C., Scherübl, H., Hescheler, J., Schultz, G. and Wittig, B. 1993.
 Selectivity in signal transduction determined by γ subunits of heterotrimeric G proteins. Science 259: 832-834.
- 3. Cali, J.J., Balcueva, E.A., Rybalkin, I. and Robishaw, J.D. 1992. Selective tissue distribution of G protein γ subunits, including a new form of the γ subunits identified by cDNA cloning. J. Biol. Chem. 267: 24023-24027.
- von Weizsäcker, E., Strathman, M.P. and Simon, M.I. 1992. Diversity among the beta subunits of heterotrimeric GTP-binding proteins: characterization of a novel β-subunit cDNA. Biochem. Biophys. Res. Comm. 183: 350-356.
- 5. Blank, J.L., Brattain, K.A. and Exton, J.H. 1992. Activation of cytosolic phosphoinositide phospholipase C by G-protein $\beta\gamma$ subunits. J. Biol. Chem. 267: 23069-23075.
- Kleuss, C., Scherübl, H., Hescheler, J., Schultz, G. and Wittig, B. 1992.
 Different β-subunits determine G-protein interaction with transmembrane receptors. Nature 358: 424-426.
- Iñiguez-Lluhi, J.A., Simon, M.I., Robishaw, J.D. and Gilman, A.G. 1992.
 G protein βγ subunits sythesized in Sf9 cells. J. Biol. Chem. 267: 23409-23417.
- 8. Simon, M.I., Strathmann, M.P. and Gautam, N. 1991. Diversity of G proteins in signal transduction. Science 252: 802-808.

SOURCE

 $G_{\gamma~2/3/4/7}$ (FL-71) is a rabbit polyclonal antibody raised against amino acids 1-71 representing full length $G_{\gamma~2}$ of human origin.

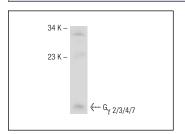
PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

APPLICATIONS

 $G_{\gamma\,2/3/4/7}$ (FL-71) is recommended for detection of $G_{\gamma\,2,}$ $G_{\gamma\,3,}$ $G_{\gamma\,4}$ and $G_{\gamma\,7}$ of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 μg per 100-500 μg of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000); partially cross reactive with other G_{ν} proteins.

 $G_{\gamma\,2/3/4/7}$ (FL-71) is also recommended for detection of $G_{\gamma\,2}$, $G_{\gamma\,3}$, $G_{\gamma\,4}$ and $G_{\gamma\,7}$ in additional species, including equine, canine, bovine, porcine and avian.


Molecular Weight of G_{v 2/3/4/7}: 8 kDa.

Positive Controls: mouse brain extract: sc-2253.

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use goat anti-rabbit lgG-HRP: sc-2004 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible goat anti-rabbit lgG-HRP: sc-2030 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunoprecipitation: use Protein A/G PLUS-Agarose: sc-2003 (0.5 ml agarose/2.0 ml). 3) Immunofluorescence: use goat anti-rabbit lgG-FITC: sc-2012 (dilution range: 1:100-1:400) or goat anti-rabbit lgG-TR: sc-2780 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941.

DATA

 $G_{\gamma~2/3/4/7}$ (FL-71): sc-28589. Western blot analysis of $G_{\gamma~2/3/4/7}$ expression in mouse brain tissue extract.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

MONOS Satisfation Guaranteed

Try $G_{\gamma 2/3/4/7}$ (C-5): sc-166419, our highly recommended monoclonal alternative to $G_{\gamma 2/3/4/7}$ (FL-71).