SANTA CRUZ BIOTECHNOLOGY, INC.

GABA_B R2 (H-300): sc-28792

BACKGROUND

In the central nervous system (CNS), γ -aminobutyric acid (GABA) is the main main inhibitory neurotransmitter that functions to regulate neuronal firing. GABA exerts its effects through two different kinds of receptors: ionotropic receptors (GABA_A and GABA_C), which produce fast inhibitory signals, and metabotropic receptors (GABA_B), which produce slow inhibitory signals. The GABA_B R receptor is a heterodimer that consists of two multi-pass membrane proteins, designated GABA_B R1 and GABA_B R2, both of which belong to the G protein-coupled receptor family and are highly expressed in brain tissue. Together, GABA_B R1 and GABA_B R2 play a crucial role in the fine-tuning of inhibitory synaptic transmissions and are implicated in slow wave sleep, muscle relaxation, hippocampal long-term potentiation and antinociception events. Both GABA_B R1 and GABA_B R2 are regulated by G proteins that have a variety of functions, including activation of potassium channels, inhibition of adenylyl cyclase (A cyclase) activity and modulation of inositol phospholipid hydrolysis.

REFERENCES

- White, J.H., et al. 2000. The GABA_B receptor interacts directly with the related transcription factors CREB2 and ATFx. Proc. Natl. Acad. Sci. USA 7: 13967-13972.
- 2. Balasubramanian, S., et al. 2004. Hetero-oligomerization between GABA_A and GABA_B receptors regulates GABA_B receptor trafficking. J. Biol. Chem. 279: 18840-18850.
- Brock, C., et al. 2005. Assembly-dependent surface targeting of the heterodimeric GABA_B receptor is controlled by COPI but not 14-3-3. Mol. Biol. Cell 16: 5572-5578.
- Osawa, Y., et al. 2006. Functional expression of the GABA_B receptor in human airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 291: L923-L931.

CHROMOSOMAL LOCATION

Genetic locus: GABBR2 (human) mapping to 9q22.33; Gabbr2 (mouse) mapping to 4 B1.

SOURCE

 ${\rm GABA}_{\rm B}$ R2 (H-300) is a rabbit polyclonal antibody raised against amino acids 183-482 mapping within an extracellular domain of ${\rm GABA}_{\rm B}$ R2 of human origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

APPLICATIONS

GABA_B R2 (H-300) is recommended for detection of GABA_B R2 of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 μ g per 100-500 μ g of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500), immunohistochemistry (including paraffin-embedded sections) (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

 GABA_B R2 (H-300) is also recommended for detection of GABA_B R2 in additional species, including equine, canine and bovine.

Suitable for use as control antibody for GABA_B R2 siRNA (h): sc-42463, GABA_B R2 siRNA (m): sc-42464, GABA_B R2 shRNA Plasmid (h): sc-42463-SH, GABA_B R2 shRNA Plasmid (m): sc-42464-SH, GABA_B R2 shRNA (h) Lentiviral Particles: sc-42463-V and GABA_B R2 shRNA (m) Lentiviral Particles: sc-42464-V.

Molecular Weight of GABA_B R2: 130 kDa.

Positive Controls: mouse brain extract: sc-2253, rat cerebellum extract: sc-2398 or IMR-32 cell lysate: sc-2409.

DATA

GABA_B R2 (H-300): sc-28792. Immunoperoxidase staining of formalin fixed, paraffin-embedded humar duodenum tissue showing cytoplasmic staining of glandular cells.

SELECT PRODUCT CITATIONS

- Heskin-Sweezie, R., et al. 2010. Type B GABA receptors contribute to the restoration of balance during vestibular compensation in mice. Neuroscience 169: 302-314.
- 2. Kurokawa, K., et al. 2012. Increase of ryanodine receptors by dopamine D1 receptors is negatively regulated by γ -aminobutyric acid type B receptors in primary cultures of mouse cerebral cortical neurons. J. Neurosci. Res. 90: 1626-1638.

Try **GABA_B R2 (H-10): sc-393270** or **GABA_B R2 (1): sc-136365**, our highly recommended monoclonal aternatives to GABA_B R2 (H-300).