SANTA CRUZ BIOTECHNOLOGY, INC.

RGS6/7 (H-190): sc-28836

BACKGROUND

Heterotrimeric G proteins function to relay information from cell surface receptors to various intracellular effectors. G proteins comprise α , β and γ subunits, and following activation the a subunit binds GTP and dissociates from the $\beta\gamma$ complex. A large group of proteins have been identified as GTPase-activating proteins (GAPs), including the RGS (regulator of G protein signaling) family, which serve to deactivate specific G_α isoforms by increasing the rate at which they convert GTP to GDP. A subfamily of RGS proteins expressed in the central nervous system contain, in addition to the highly conserved RGS domain, a characteristic GGL domain, or G protein γ subunit-like domain, which mediates binding to $G_{\beta5}$ subunits. This subfamily, which includes RGS6, RGS7, RGS9 and RGS11, associates with $G_{\beta5}$ to form active GAP complexes that are predominantly localized to the cytosol. RGS/ $\beta5$ complexes preferentially target $G_{\alpha 0}$ subunit for hydrolysis and inhibit $G_{\beta1\gamma2}$ -mediated activation of phospholipase C.

REFERENCES

- 1. Conklin, B.R. and Bourne, H.R. 1993. Structural elements of G_{α} subunits that interact with G_{By} receptors, and effectors. Cell 73: 631-641.
- 2. Snow, B.E., et al. 1998. A G protein γ subunit-like domain shared between RGS11 and other RGS proteins specifies binding to $G_{\beta5}$ subunits. Proc. Natl. Acad. Sci. USA 95: 13307-13312.
- Thomas, E.A., et al. 1998. RGS9: a regulator of G protein signalling with specific expression in rat and mouse striatum. J. Neurosci. Res. 52: 118-124.
- Guan, K.L. and Han, M. 1999. A G protein signaling network mediated by an RGS protein. Genes Dev. 13: 1763-1767.
- 5. Hepler, J.R. 1999. Emerging roles for RGS proteins in cell signaling. Trends Pharmacol. Sci. 20: 376-382.

CHROMOSOMAL LOCATION

Genetic locus: RGS6 (human) mapping to 14q24.2, RGS7 (human) mapping to 1q43; Rgs6 (mouse) mapping to 12 D1, Rgs7 (mouse) mapping to 1 H3.

SOURCE

RGS6/7 (H-190) is a rabbit polyclonal antibody raised against amino acids 306-495 mapping at the C-terminus of RGS7 of human origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

APPLICATIONS

RGS6/7 (H-190) is recommended for detection of RGS6 and isoforms 1-4 of RGS7 of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500), immunohistochemistry (including paraf-fin-embedded sections) (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

RGS6/7 (H-190) is also recommended for detection of RGS6 and isoforms 1-4 of RGS7 in additional species, including equine and canine.

Molecular Weight of RGS6/7: 55 kDa.

Positive Controls: TT whole cell lysate: sc-364195, mouse cerebellum extract: sc-2403 or mouse brain extract: sc-2253.

DATA

RGS6/7 (H-190): sc-28836. Western blot analysis of RGS6 and RGS7 expression in TT whole cell lysate (A) and mouse cerebellum tissue extract (B). RGS6/7 (H-190): sc-28836. Immunofluorescence staining of normal mouse intestine frozen section showing membrane and cytoplasmic staining (A). Immunoperoxidase staining of formalin fixed, paraffin-embedded human cerebellum tissue showing cytoplasmic staining of cells in molecular and granular layers and Purkinje cells. Kindly provided by The Swedish Human Protein Atlas (HPA) program (B).

SELECT PRODUCT CITATIONS

- Fujita, K., et al. 2008. Immunohistochemical identification of messenger RNA-related proteins in basophilic inclusions of adult-onset atypical motor neuron disease. Acta Neuropathol. 116: 439-445.
- Hernández-Pinto, A.M., et al. 2009. α-Tocopherol decreases the somatostatin receptor-effector system and increases the cyclic AMP/cyclic AMP response element binding protein pathway in the rat dentate gyrus. Neuroscience 162: 106-117.
- Saowakon, N., et al. 2009. Fasciola gigantica: anthelmintic effect of the aqueous extract of *Artocarpus lakoocha*. Exp. Parasitol. 122: 289-298.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

MONOS Satisfation Guaranteed

Try **RGS6/7 (F-10): sc-271643** or **RGS6/7 (B-10): sc-398222**, our highly recommended monoclonal alternatives to RGS6/7 (H-190).