SANTA CRUZ BIOTECHNOLOGY, INC.

PKAγ cat (K-12): sc-30716

BACKGROUND

The second messenger cyclic AMP (cAMP) mediates diverse cellular responses to external signals such as proliferation, ion transport, regulation of metabolism and gene transcription by activation of the cAMP-dependent protein kinase (cAPK or PKA). Activation of PKA occurs when cAMP binds to the two regulatory subunits of the tetrameric PKA holoenzyme resulting in release of active catalytic subunits. Three catalytic (C) subunits have been identified, designated C α , C β and C γ , that each represent specific gene products. C α and C β are closely related (93% amino acid sequence similarity), whereas C γ displays 83% and 79% similarity to C α and C β , respectively. Activation of transcription upon elevation of cAMP levels results from translocation of PKA to the nucleus where it phosphorylates the transcription factor cAMP response element binding protein (CREB) on serine 133 which in turn leads to TFIIB binding to TATA-box-binding protein TBP1, thus linking phospho-CREB to the pol II transcription initiation complex.

REFERENCES

- Beavo, J.A., et al. 1974. Activation of protein kinase by physiological concentrations of cyclic AMP. Proc. Natl. Acad. Sci. USA 71: 3580-3583.
- Krebs, E.G., et al. 1980. Phosphorylation and dephosphorylation of enzymes. Ann. Rev. Biochem. 48: 923-959.
- 3. Maldonado, F., et al. 1988. cAMP-dependent protein kinase, α -catalytic subunit. Nucleic Acids Res. 16: 8189-8190.
- Gonzalez, G.A., et al. 1989. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at Serine 133. Cell 59: 675-680.
- 5. Beebe, S.J., et al. 1990. cAMP-dependent protein kinase, β -catalytic subunit. Mol. Endocrinol. 4: 465-475.
- Meinkoth, J.L., et al. 1993. Signal transduction through the cAMPdependent protein kinase. Mol. Cell. Biochem. 127/128: 179-186.
- 7. Nordheim, A. 1994. CREB takes CBP to tango. Nature 370: 177-178.

SOURCE

 $PKA\gamma$ cat (K-12) is an affinity purified goat polyclonal antibody raised against a peptide mapping near the C-terminus of $PKA\gamma$ catalytic subunit of human origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-30716 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

STORAGE

Store at 4° C, **D0 NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

APPLICATIONS

PKAγ cat (K-12) is recommended for detection of PKAγ catalytic subunit of human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000); may cross-react with PKA a subunit in m,r,h.

Suitable for use as control antibody for PKAy cat siRNA (h): sc-36236.

Positive Controls: Human breast tissue.

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz MarkerTM compatible donkey anti-goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz MarkerTM Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluores-cence: use donkey anti-goat IgG-FITC: sc-2024 (dilution range: 1:100-1:400) or donkey anti-goat IgG-TR: sc-2783 (dilution range: 1:100-1:400) with UltraCruzTM Mounting Medium: sc-24941.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.