# Hemoglobin γ (V-15): sc-31118



The Power to Question

## **BACKGROUND**

Hemoglobin (Hgb) is coupled to four iron-binding, methene-linked tetrapyrrole rings (heme). The  $\alpha$  (16p13.3; 5'- $\zeta$ -pseudo $\zeta$ -pseudo  $\alpha$ 2-pseudo  $\alpha$ 1- $\alpha$ 2- $\alpha$ 1-01-3') and  $\beta$  (11p15.5) globin loci determine the basic hemoglobin structure. The globin portion of hemoglobin consists of two  $\alpha$  chains and two  $\beta$  chains arranged in pairs forming a tetramer. Each of the four globin chains covalently associates with a heme group. The bonds between  $\alpha$  and  $\beta$  chains are weaker than between similar globin chains, thereby forming a cleavage plane that is important for oxygen binding and release. High affinity for oxygen occurs upon relaxation of the  $\alpha$ 1- $\beta$ 2 cleavage plane. When the two  $\alpha$ 1- $\beta$ 2 interfaces are closely bound, hemoglobin has a low affinity for oxygen. Hb A, which contains two  $\alpha$  chains plus two  $\beta$  chains, comprises 97% of total circulating hemoglobin. The remaining 3% of total circulating hemoglobin is comprised of Hb A-2, which consists of two  $\alpha$  chains plus two  $\delta$  chains, and fetal hemoglobin (Hb F), which consists of two  $\alpha$  chains together with two  $\gamma$  chains.

## **REFERENCES**

- 1. Liebhaber, S.A., Goossens, M. and Kan, Y.W. 1981. Homology and concerted evolution at the  $\alpha$ 1 and  $\alpha$ 2 loci of human  $\alpha$ -globin. Nature 290: 26-29.
- Goodbourn, S.E., Higgs, D.R., Clegg, J.B. and Weatherall, D.J. 1983.
  Molec-ular basis of length polymorphism in the human ζ-globin gene complex. Proc. Natl. Acad. Sci. USA 80: 5022-5026.
- 3. Giardina, B., Messana, I., Scatena, R. and Castagnola, M. 1995. The multiple functions of hemoglobin. Crit. Rev. Biochem. Mol. Biol. 30: 165-196.
- 4. Adachi, K., Zhao, Y. and Surrey, S. 2002. Assembly of human hemoglobin (Hb)  $\beta$  and  $\gamma$ -globin chains expressed in a cell-free system with  $\alpha$ -globin chains to form Hb A and Hb F. J. Biol. Chem. 277: 13415-13420.
- Sudha, R., Anantharaman, L., Sivaram, M.V., Mirsamadi, N., Choudhury, D., Lohiya, N.K., Gupta, R.B. and Roy, R.P. 2004. Linkage of interactions in sickle hemoglobin fiber assembly: inhibitory effect emanating from mutations in the AB region of the a chain is annulled by a mutation at its EF corner. J. Biol. Chem. 279: 20018-20027.
- Feng, L., Gell, D.A., Zhou, S., Gu, L., Kong, Y., Li, J., Hu, M., Yan, N., Lee, C., Rich, A.M., Armstrong, R.S., Lay, P.A., Gow, A.J., Weiss, M.J., Mackay, J.P. and Shi, Y. 2004. Molecular mechanism of AHSP-mediated stabilization of α-hemoglobin. Cell 119: 629-640.
- 7. Baudin-Creuza, V., Vasseur-Godbillon, C., Pato, C., Prehu, C., Wajcman, H. and Marden, M.C. 2004. Transfer of human  $\alpha$  to  $\beta$ -hemoglobin via its chaperone protein: evidence for a new state. J. Biol. Chem. 279: 36530-36533.

## CHROMOSOMAL LOCATION

Genetic locus: HBG1/HBG2/HBB/HBE1 (human) mapping to 11p15.4.

# SOURCE

Hemoglobin  $\gamma$  (V-15) is an affinity purified goat polyclonal antibody raised against a peptide mapping within an internal region of Hemoglobin  $\gamma$  of human origin.

#### **PRODUCT**

Each vial contains 200  $\mu g$  IgG in 1.0 ml of PBS with <0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-31118 P, (100  $\mu$ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

## **APPLICATIONS**

Hemoglobin  $\gamma$  (V-15) is recommended for detection of Hemoglobin  $\gamma$  and, to a lesser extent, hemoglobin  $\beta$  and hemoglobin  $\epsilon$  of human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Molecular Weight of Hemoglobin γ: 18 kDa.

Positive Controls: HEL 92.1.7 cell lysate: sc-2270 or TF-1 cell lysate: sc-2412.

#### **RECOMMENDED SECONDARY REAGENTS**

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey anti-goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use donkey anti-goat IgG-FITC: sc-2024 (dilution range: 1:100-1:400) or donkey anti-goat IgG-TR: sc-2783 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941.

## **STORAGE**

Store at 4° C, \*\*DO NOT FREEZE\*\*. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

# **RESEARCH USE**

For research use only, not for use in diagnostic procedures.

#### **PROTOCOLS**

See our web site at www.scbt.com or our catalog for detailed protocols and support products.



Try Hemoglobin  $\gamma$  (51-7): sc-21756 or Hemoglobin  $\gamma$  (B-4): sc-377395, our highly recommended monoclonal aternatives to Hemoglobin  $\gamma$  (V-15).

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com