SANTA CRUZ BIOTECHNOLOGY, INC.

EAAT2 (K-16): sc-31582

BACKGROUND

Excitatory amino acid transporter 1 (EAAT1) is one of the two glial glutamate transporters that clear the extracellular glutamate generated during neuronal signal transmission. Excitatory amino acid transporters (EAATs) are membranebound proteins that are localized in glial cells and pre-synaptic glutamatergic nerve endings. EAATs transport the excitatory neurotransmitters L-glutamate and D-aspartate, a process that is essential for terminating the postsynaptic action of glutamate. The reuptake of amino acid neurotransmitters by EAAT proteins has been shown to protect neurons from excitotoxicity, which is caused by the accumulation of amino acid neurotransmitters. Three glutamate transporters have been identified in human brain, designated EAAT1-3. EAAT1 and EAAT3 are also expressed in various non-nervous tissues, while EAAT2 expression appears to be restricted to the brain. Surface expression of the glial glutamate transporter EAAT1 is stimulated by Insulin-like growth factor 1 through activation of phosphatidylinositol-3-kinase.

REFERENCES

- Arriza, J.L., Fairman, W.A., Wadiche, J.I., Murdoch, G.H., Kavanaugh, M.P. and Amara, S.G. 1994. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J. Neurosci. 14: 5559-5569.
- Kirschner, M.A., Copeland, N.G., Gilbert, D.J., Jenkins, N.A. and Amara, S.G. 1994. Mouse excitatory amino acid transporter EAAT2: isolation, characterization, and proximity to neuroexcitability loci on mouse chromosome 2. Genomics 24: 218-224.
- Sutherland, M.L., Delaney, T.A. and Noebels, J.L. 1996. Glutamate transporter mRNA expression in proliferative zones of the developing and adult murine CNS. J. Neurosci. 16: 2191-2207.
- Ikeda, J., Terakawa, S., Murota, S., Morita, I. and Hirakawa, K. 1996. Nuclear disintegration as a leading step of glutamate excitotoxicity in brain neurons. J. Neurosci. Res. 43: 613-622.
- Stoffel, W., Sasse, J., Duker, M., Muller, R., Hofmann, K., Fink, T. and Lichter, P. 1996. Human high affinity, Na+-dependent L-glutamate/ L-aspartate transporter GLAST-1 (EAAT-1): gene structure and localization to chromosome 5p11- p12. FEBS Lett. 386: 189-193.
- Rauen, T., Taylor, W.R., Kuhlbrodt, K. and Wiessner, M. 1998. High-affinity glutamate transporters in the rat retina: a major role of the glial glutamate transporter GLAST-1 in transmitter clearance. Cell Tissue Res. 291: 19-31.

CHROMOSOMAL LOCATION

Genetic locus: SLC1A2 (human) mapping to 11p13; Slc1a2 (mouse) mapping to 2 E2.

SOURCE

EAAT2 (K-16) is an affinity purified goat polyclonal antibody raised against a peptide mapping within an N-terminal cytoplasmic domain of EAAT2 of human origin.

STORAGE

Store at 4° C, **D0 NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-31581 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

APPLICATIONS

EAAT2 (K-16) is recommended for detection of EAAT2 of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

EAAT2 (K-16) is also recommended for detection of EAAT2 in additional species, including equine, canine, bovine and porcine.

Suitable for use as control antibody for EAAT2 siRNA (h): sc-35255, EAAT2 siRNA (m): sc-35256, EAAT2 shRNA Plasmid (h): sc-35255-SH, EAAT2 shRNA Plasmid (m): sc-35256-SH, EAAT2 shRNA (h) Lentiviral Particles: sc-35255-V and EAAT2 shRNA (m) Lentiviral Particles: sc-35256-V.

Molecular Weight of EAAT2: 70 kDa.

Positive Controls: HeLa whole cell lysate: sc-2200, rat brain extract: sc-2392 or HT-1080 whole cell lysate: sc-364183.

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey anti-goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluo-rescence: use donkey anti-goat IgG-FITC: sc-2024 (dilution range: 1:100-1:400) or donkey anti-goat IgG-TR: sc-2783 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.