Yif1p (yK-20): sc-32673

The Power to Question

BACKGROUND

The yeast protein Yif1p is a multiple transmembrane spanning protein that is localized to COPII vesicles and the Golgi membrane. At the Golgi membrane, Yif1p forms a complex with Yip1p. The Yip1p-Yif1p complex is involved in ER to Golgi transport, allowing for the fusion of ER vesicles to the Golgi apparatus. The Yip1p-Yif1p complex interacts with several proteins, including Yosp1p, Ypt1p, Ypt31p, Sec4p and Btn2p, as well as SNARE proteins involved in membrane fusion, Bos1p and Sec22p. Yif1p is characterized by a cytosolic N-terminus that interacts with GTPases, and a luminal C terminus. Mutations in either Yif1p or Yip1p *in vitro* block ER-Golgi transport, corroborating the putative functional role of this complex.

REFERENCES

- Matern, H., et al. 2000. A novel Golgi membrane protein is part of a GTPase-binding protein complex involved in vesicle targeting. EMBO J. 19: 4485-4492.
- Otte, S., et al. 2001. Erv41p and Erv46p: new components of COPII vesicles involved in transport between the ER and Golgi complex. J. Cell. Biol. 152: 503-518.
- Barrowman, J., et al. 2003. The Yip1p.Yif1p complex is required for the fusion competence of endoplasmic reticulum-derived vesicles. J. Biol. Chem. 278: 19878-19884.
- Chattopadhyay, S., et al. 2003. The yeast model for Batten disease: a role for Btn2p in the trafficking of the Golgi-associated vesicular targeting protein, Yif1p. Biochem. Biophys. Res. Commun. 302: 534-538.
- Shakoori, A., et al. 2003. Identification of a five-pass transmembrane protein family localizing in the Golgi apparatus and the ER. Biochem. Biophys. Res. Commun. 312: 850-857.
- Heidtman, M., et al. 2005. Yos1p is a novel subunit of the Yip1p-Yif1p complex and is required for transport between the endoplasmic reticulum and the Golgi complex. Mol. Biol. Cell. 16: 1673-1683.
- 7. Jin, C., et al. 2005. Human Yip1A specifies the localization of Yif1 to the Golgi apparatus. Biochem. Biophys. Res. Commun. 334: 16-22.
- Kim, Y., et al. 2005. Interaction among Btn1p, Btn2p, and Ist2p reveals
 potential interplay among the vacuole, amino acid levels, and ion homeostasis in the yeast Saccharomyces cerevisiae. Eukaryot. Cell. 4: 281-288.

SOURCE

Yif1p (yK-20) is an affinity purified goat polyclonal antibody raised against a peptide mapping within an internal region of Yif1p of *Saccharomyces cerevisiae* origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with <0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-32673 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

APPLICATIONS

Yif1p (yK-20) is recommended for detection of Yif1p of *Saccharomyces cerevisiae* origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Molecular Weight of Yif1p: 35.5 kDa.

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey anti-goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use donkey anti-goat IgG-FITC: sc-2024 (dilution range: 1:100-1:400) or donkey anti-goat IgG-TR: sc-2783 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com