SANTA CRUZ BIOTECHNOLOGY, INC.

karyopherin α1 (yD-18): sc-32681

BACKGROUND

Protein transport across the nucleus is a selective, multi-step process involving several cytoplasmic factors. Proteins must be recognized as import substrates, dock at the nuclear pore complex and translocate across the nuclear envelope in an ATP-dependent fashion. Two cytosolic factors centrally involved in the recognition and docking process are the karyopherin α 1 and karyopherin β 1 subunits. Karyopherin α 1 functions in the recognition and targeting of substrates destined for nuclear import, while karyopherin β 1 serves as an adapter, tethering the karyopherin α 1/substrate complex to docking proteins on the nuclear envelope termed nucleoporins. Karyopherin α 2 has been shown to complex with Epstein-Barr virus nuclear antigen 1 (EBNA1). Certain RNA-binding proteins are imported to the nucleus by karyopherin β 2, and karyopherin β 3 appears to be involved in the import of some ribosomal proteins.

REFERENCES

- Moroianu, J., et al. 1995. Previously identified protein of uncertain function is karyopherin a and together with karyopherinb docks import substrate at nuclear pore complexes. Proc. Natl. Acad. Sci. USA 92: 2008-2011.
- 2. Moroianu, J., et al. 1995. Protein export from the nucleus requires the GTPase Ran and GTP hydrolysis. Proc. Natl. Acad. Sci. USA 92: 4318-4322.
- 3. Lounsbury, K.M., et al. 1996. Ran binding domains promote the interaction of Ran with p97/ β -karyopherin, linking the docking and translocation steps of nuclear import. J. Biol. Chem. 271: 2357-2360.
- 4. Moroianu, J., et al. 1996. The binding site of karyopherin a for karyopherin β overlaps with a nuclear localization sequence. Proc. Natl. Acad. Sci. USA 93: 6572-6576.
- 5. Moroianu, J., et al. 1996. Nuclear protein import: Ran-GTP dissociates the karyopherin α/β heterodimer by displacing α from an overlapping binding site on β . Proc. Natl. Acad. Sci. USA 93: 7059-7062.
- 6. Fischer, N., et al. 1997. Epstein-Barr virus nuclear antigen 1 forms a complex with the nuclear transporter karyopherin α 2. J. Biol. Chem. 272: 3999-4005.
- 7. Yaseen, N.R., et al. 1997. Cloning and characterization of human karyopherin β3. Proc. Natl. Acad. Sci. USA 94: 4451-4456.
- Bonifaci, N., et al.1997. Karyopherin β2 mediates nuclear import of a mRNA binding protein. Proc. Natl. Acad. Sci. USA 94: 5055-5060.

SOURCE

karyopherin α 1 (yD-18) is an affinity purified goat polyclonal antibody raised against a peptide mapping at the N-terminus of karyopherin α 1 of *Saccharomyces cerevisiae* origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-32681 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

APPLICATIONS

karyopherin α 1 (yD-18) is recommended for detection of karyopherin α 1 of *Saccharomyces cerevisiae* origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey anti-goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048.

STORAGE

Store at 4° C, **D0 NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.