p-PKC θ (Ser 676): sc-33024

The Power to Question

BACKGROUND

Members of the protein kinase C (PKC) family play a key regulatory role in a variety of cellular functions, including cell growth and differentiation, gene expression, hormone secretion and membrane function. PKCs were originally identified as serine/threonine protein kinases whose activity was dependent on calcium and phospholipids. Diacylglycerols (DAG) and tumor promoting phorbol esters bind to and activate PKC. PKCs can be subdivided into at least two major classes, including conventional (c) PKC isoforms (α , β I, β II and γ) and novel (n) PKC isoforms (δ , ϵ , ω , η and θ). PKC isoforms can be activated through tyrosine phosphorylation and catalytically activated upon treatment with H_2O_2 . The Tyr 155, 525, 523 and 565 residues in the catalytic domain are crucial for activation of these enzymes. The residue Ser 643 appears to be an autophosphorylation site. PKC $\boldsymbol{\theta}$ can undergo autophosphorylation on Serine 676 (Ser 676) in the turn loop and Serine 695 (Ser 695) in the hydrophobic loop. Phosphorylation of Ser 676 may negatively regulate activation of NFκB. Ser 695 is crucial to activate the phosphorylation Threonine 692 (Thr 692) and Threonine 703 (Thr 703) residues, both of which are necessary for mobility shift.

REFERENCES

- Takai, Y., et al. 1979. Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. J. Biol. Chem. 254: 3692-3695.
- Castagna, M., et al. 1982. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J. Biol. Chem. 257: 7847-7851.
- 3. Kikkawa, U., et al. 1983. Protein kinase C as a possible receptor of tumor-promoting phorbol esters. J. Biol. Chem. 258: 11442-11445.
- Nishizuka, Y. 1984. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308: 693-698.
- Nishizuka, Y. 1984. Turnover of inositol phospholipids and signal transduction. Science 225: 1365-1370.
- 6. Osada, S., et al. 1992. A new member of the protein kinase C family, nPKC θ , predominantly expressed in skeletal muscle. Mol. Cell. Biol. 12: 3930-3938.
- Konishi, H., et al. 1997. Activation of protein kinase C by tyrosine phosphorylation in response to H₂O₂. Proc. Natl. Acad. Sci. USA 94: 11233-11237.
- 8. Parekh, D., et al. 1999. Mammalian TOR controls one of two kinase pathways acting upon nPKC δ and nPKC ϵ . J. Biol. Chem. 274: 34758-34764.
- 9. Konishi, H., et al. 2001. Phosphorylation sites of protein kinase C δ in H₂O₂-treated cells and its activation by tyrosine kinase *in vitro*. Proc. Natl. Acad. Sci. USA 98: 6587-6592.

CHROMOSOMAL LOCATION

Genetic locus: PRKCQ (human) mapping to 10p15.1; Prkcq (mouse) mapping to 2 A1.

SOURCE

p-PKC θ (Ser 676) is a rabbit polyclonal antibody raised against a short amino acid sequence containing Ser 676 phosphorylated PKC θ of mouse origin.

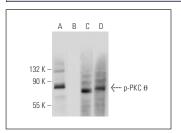
PRODUCT

Each vial contains 200 μg IgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-33024 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

APPLICATIONS

p-PKC θ (Ser 676) is recommended for detection of Ser 676 phosphorylated PKC θ of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 μ g per 100-500 μ g of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).


p-PKC θ (Ser 676) is also recommended for detection of correspondingly phosphorylated PKC θ in additional species, including equine, canine and hovine

Suitable for use as control antibody for PKC θ siRNA (h): sc-36252, PKC θ siRNA (m): sc-36247, PKC θ shRNA Plasmid (h): sc-36252-SH, PKC θ shRNA Plasmid (m): sc-36247-SH, PKC θ shRNA (h) Lentiviral Particles: sc-36252-V and PKC θ shRNA (m) Lentiviral Particles: sc-36247-V.

Molecular Weight of p-PKC θ: 82 kDa.

Positive Controls: Jurkat + anti-CD3 cell lysate: sc-24710 or Jurkat + PMA cell lysate: sc-24718.

DATA

Western blot analysis of PKC θ phosphorylation in PMA treated (**A,C**) and PMA and lambda protein phosphatase treated (**B,D**) Jurkat whole cell lysates. Antibodies tested include p-PKC θ (Ser 676): sc-33024 (**A,B**) and PKC θ (C-18): sc-212 (**C,D**).

SELECT PRODUCT CITATIONS

1. Chuang, H.C., et al. 2011. The kinase GLK controls autoimmunity and NF- κ B signaling by activating the kinase PKC- θ in T cells. Nat. Immunol. 12: 1113-1118.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures