DSP (M-300): sc-33587

The Power to Question

BACKGROUND

DSPP (dentin sialophosphoprotein) is a precursor protein that is cleaved into two mature forms, DSP (dentin sialoprotein) and DPP (dentin phosphoprotein). DSPP is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family of proteins and is secreted by odontoblasts. DSP is heavily glycosylated but DPP is not. DSP and DPP are principle proteins of the dentin extracellular matrix of the tooth, with DSP having a role in dentinogenesis and DPP binding calcium, facilitating initial mineralization of dentin matrix collagen and regulating the size and shape of the crystals. Mutations in the DSPP gene are associated with DFNA39/DGI1 (deafness, autosomal dominant, 39, with dentinogenesis imperfecta 1), a disease characterized by progressive heavy-frequency hearing loss, DGI2 (dentinogenesis imperfect 2) and DGI3 (dentinogenesis imperfecta 3), diseases characterized by amber-brown teeth that fracture and shed enamel with wear.

REFERENCES

- Wang, S.K., et al. 2011. Enamel malformations associated with a defined dentin sialophosphoprotein mutation in two families. Eur. J. Oral Sci. 119: 158-167.
- Suzuki, S., et al. 2012. Dentin sialophosphoprotein and dentin matrix protein-1: two highly phosphorylated proteins in mineralized tissues. Arch. Oral Biol. 57: 1165-1175.
- 3. Li, D., et al. 2012. Mutation identification of the DSPP in a Chinese family with DGI-II and an up-to-date bioinformatic analysis. Genomics 99: 220-226.
- Maciejewska, I. and Chomik, E. 2012. Hereditary dentine diseases resulting from mutations in DSPP gene. J. Dent. 40: 542-548.
- von Marschall, Z., et al. 2012. Rough endoplasmic reticulum trafficking errors by different classes of mutant dentin sialophosphoprotein (DSPP) cause dominant negative effects in both dentinogenesis imperfecta and dentin dysplasia by entrapping normal DSPP. J. Bone Miner. Res. 27: 1309-1321.

CHROMOSOMAL LOCATION

Genetic locus: Dspp (mouse) mapping to 5 E5.

SOURCE

DSP (M-300) is a rabbit polyclonal antibody raised against amino acids 18-317 mapping near the N-terminus of DSP of mouse origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

APPLICATIONS

DSP (M-300) is recommended for detection of DSP and precursor DSPP of mouse and rat origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 μ g per 100-500 μ g of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for DSPP siRNA (m): sc-40501, DSPP shRNA Plasmid (m): sc-40501-SH and DSPP shRNA (m) Lentiviral Particles: sc-40501-V.

Molecular Weight of human DSPP: 131 kDa.

Molecular Weight of human DSP: 47 kDa.

Molecular Weight of mouse/rat DSPP: 94/70 kDa.

Molecular Weight of mouse/rat DSP: 45 kDa.

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use goat anti-rabbit IgG-HRP: sc-2004 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible goat anti-rabbit IgG-HRP: sc-2030 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunoprecipitation: use Protein A/G PLUS-Agarose: sc-2003 (0.5 ml agarose/2.0 ml). 3) Immunofluorescence: use goat anti-rabbit IgG-FITC: sc-2012 (dilution range: 1:100-1:400) or goat anti-rabbit IgG-TR: sc-2780 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941.

SELECT PRODUCT CITATIONS

- 1. Li, Z.Y., et al. 2007. Odontogenic potential of bone marrow mesenchymal stem cells. J. Oral Maxillofac. Surg. 65: 494-500.
- 2. Wu, G., et al. 2009. Odontogenic potential of mesenchymal cells from hair follicle dermal papilla. Stem Cells Dev. 18: 583-589.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Try **DSPP (LFMb-21):** sc-73632, our highly recommended monoclonal alternative to DSP (M-300). Also, for AC, HRP, FITC, PE, Alexa Fluor[®] 488 and Alexa Fluor[®] 647 conjugates, see **DSPP (LFMb-21):** sc-73632.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com