p-IRS-1 (Ser 307): sc-33956

The Power to Question

BACKGROUND

Insulin receptor substrate-1 (IRS-1) is a substrate of the Insulin receptor that undergoes phosphorylation in response to Insulin, IGF-1 and IL-4. Tyrosine (Tyr) phosphorylation of IRS-1 mediates Insulin-stimulated responses, while Serine (Ser)/Threonine (Thr) phosphorylation of IRS-1 can either enhance or negate Insulin effects. Tyrosines 465, 612, 632, 662, 941 and 989 of IRS-1 resemble YXXM motifs that upon phosphorylation are predicted to bind SH2 domains in the p85 regulatory subunit of PI3K, resulting in activation of p110 catalytic subunit. SHP-2 binding to IRS-1 can occur upon phosphorylation at Tyr 1179 and Tyr 1229. GRB2 binding can occur upon phsophoryl-ation at Tyr 896. Rodent Ser 99 and Thr 502 of IRS-1 are casein kinase II-dependent phosphorylation sites. There is an increase in Ser 636 phosphoryl-ation of IRS-1 in primary skeletal muscle cells from patients with type 2 diabetes. IGF-I and anisomycin treatment converge downstream onto FRAP and PKCd to induce IRS-1 Ser 312 phosphorylation. Insulin resistance in the aorta of hypertensive rats is associated with elevated IRS-1 phosphorylation at Ser 307 and increased SAPK/JNK activation. IRS-1 contains three putative binding sites for 14-3-3 protein at Ser 270, Ser 374 and Ser 641 that are capable of phosphorylation.

REFERENCES

- Ogihara, T., et al. 1997. 14-3-3 protein binds to Insulin receptor substrate-1, one of the binding sites of which is in the phosphotyrosine binding domain.
 J. Biol. Chem. 272: 25267-25274.
- Esposito, D.L., et al. 2001. Tyr 612 and Tyr 632 in human Insulin receptor substrate-1 are important for full activation of Insulin-stimulated phosphatidylinositol 3-kinase activity and translocation of Glut4 in adipose cells. Endocrinology 142: 2833-2840.
- Hers, I., et al. 2002. Reciprocal feedback regulation of Insulin receptor and Insulin receptor substrate tyrosine phosphorylation by phosphoinositide 3-kinase in primary adipocytes. Biochem. J. 368: 875-884.
- 4. Ishizuka, T., et al. 2004. Protein kinase C (PKC) β modulates serine phosphorylation of Insulin receptor substrate-1 (IRS-1)—effect of overexpression of PKC β on Insulin signal transduction. Endocr. Res. 30: 287-299.

CHROMOSOMAL LOCATION

Genetic locus: IRS1 (human) mapping to 2q36.3; Irs1 (mouse) mapping to 1 C5.

SOURCE

p-IRS-1 (Ser 307) is a rabbit polyclonal antibody raised against a short amino acid sequence containing Ser 307 phosphorylated IRS-1 of human origin.

PRODUCT

Each vial contains 100 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-33956 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

RESEARCH USE

For research use only, not for use in diagnostic procedures.

APPLICATIONS

p-IRS-1 (Ser 307) is recommended for detection of Ser 307 phosphorylated IRS-1 of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

p-IRS-1 (Ser 307) is also recommended for detection of correspondingly phosphorylated IRS-1 in additional species, including equine, canine, bovine, porcine and avian.

Suitable for use as control antibody for IRS-1 siRNA (h): sc-29376, IRS-1 siRNA (m): sc-29377, IRS-1 shRNA Plasmid (h): sc-29376-SH, IRS-1 shRNA Plasmid (m): sc-29377-SH, IRS-1 shRNA (h) Lentiviral Particles: sc-29376-V and IRS-1 shRNA (m) Lentiviral Particles: sc-29377-V.

Molecular Weight of p-IRS-1: 170-185 kDa.

Positive Controls: MCF7 + Insulin cell lysate: sc-24733 or A549 cell lysate: sc-2413.

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western blotting: use goat anti-rabbit IgG-HRP: sc-2004 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible goat anti-rabbit IgG-HRP: sc-2030 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto B Blocking Reagent: sc-2335 (use 50 mM NaF, sc-24988, as diluent), Western Blotting Luminol Reagent: sc-2048 and Lambda Phosphatase: sc-200312A. 2) Immunofluorescence: use goat anti-rabbit IgG-FITC: sc-2012 (dilution range: 1:100-1:400) or goat anti-rabbit IgG-TR: sc-2780 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941.

SELECT PRODUCT CITATIONS

- Shen, N., et al. 2011. An early response transcription factor, Egr-1, enhances Insulin resistance in type 2 diabetes with chronic hyperinsulinism. J. Biol. Chem. 286: 14508-14515.
- 2. Caricilli, A.M., et al. 2011. Gut microbiota is a key modulator of Insulin resistance in TLR 2 knockout mice. PLoS Biol. 9: e1001212.
- Lin, L., et al. 2012. Adipocyte expression of PU.1 transcription factor causes Insulin resistance through upregulation of inflammatory cytokine gene expression and ROS production. Am. J. Physiol. Endocrinol. Metab. 302: E1550-E1559.
- Díaz-Ruiz, A., et al. 2015. Proteasome dysfunction associated to oxidative stress and proteotoxicity in adipocytes compromises insulin sensitivity in human obesity. Antioxid. Redox Signal. E-published.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.