Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Manganese(II) Chloride, Anhydrous

STATEMENT OF HAZARDOUS NATURE

SUPPLIER
Santa Cruz Biotechnology, Inc.
2145 Delaware Avenue
Santa Cruz, California 95060
800.457.3801 or 831.457.3800

EMERGENCY
ChemWatch
Within the US & Canada: 877-715-9305
Outside the US & Canada: +800 2436 2255
(1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS
Cl2Mn, Mn-Cl2, "manganese (II) chloride", "manganese dichloride", "manganous chloride", scacchite

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

CANADIAN WHMIS SYMBOLS
EMERGENCY OVERVIEW

RISK
Harmful if swallowed.
Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.
Inhalation may produce health damage*.
Cumulative effects may result following exposure*.
* (limited evidence).

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- Poisonings rarely occur after oral administration of manganese salts because they are poorly absorbed from the gut.

EYE
- Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may cause transient discomfort characterised by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result.

SKIN
- Skin contact is not thought to produce harmful health effects (as classified under EC Directives using animal models).
- Systemic harm, however, has been identified following exposure of animals by at least one other route and the material may still produce health damage following entry through wounds, lesions or abrasions.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
- The material is not thought to produce respiratory irritation (as classified by EC Directives using animal models). Nevertheless inhalation of dusts, or fumes, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.
- Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
- If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.
- Manganese fume is toxic and produces nervous system effects characterised by tiredness. Acute poisoning is rare although acute inflammation of the lungs may occur.

CHRONIC HEALTH EFFECTS
- Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.
- Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.
- Manganese is an essential trace element. Chronic exposure to low levels of manganese can include a mask-like facial expression, spastic gait, tremors, slurred speech, disordered muscle tone, fatigue, anorexia, loss of strength and energy, apathy and poor concentration.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manganese(II) Chloride, Anhydrous</td>
<td>7773-01-5</td>
<td>>98</td>
</tr>
</tbody>
</table>

Section 4 - FIRST AID MEASURES

SWALLOWED
- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
- For advice, contact a Poisons Information Centre or a doctor.
Urgent hospital treatment is likely to be needed.
In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.

EYE
If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN
If skin or hair contact occurs:
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.

NOTES TO PHYSICIAN
- Both dermal and oral toxicity of manganese salts is low because of limited solubility of manganese. No known permanent pulmonary sequelae develop after acute manganese exposure.
- [Ellenhorn and Barceloux: Medical Toxicology]
- In clinical trials with miners exposed to manganese-containing dusts, L-dopa relieved extrapyramidal symptoms of both hypo kinetic and dystonic patients.

Section 5 - FIRE FIGHTING MEASURES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapor Pressure (mmHg)</td>
<td>9.751 @ 778 deg.C</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>2.96 @ 25 deg.C</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

EXTINGUISHING MEDIA
- Water spray or fog.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).

FIRE FIGHTING
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.

When any large container (including road and rail tankers) is involved in a fire, consider evacuation by 800 metres in all directions.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
- Non combustible.
- Not considered a significant fire risk, however containers may burn.

Decomposition may produce toxic fumes of: hydrogen chloride, metal oxides. May emit poisonous fumes.

FIRE INCOMPATIBILITY
None known.

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.

MAJOR SPILLS
- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.

RECOMMENDED STORAGE METHODS
- Glass container is suitable for laboratory quantities
- Lined metal can, lined metal pail/ can.
- Plastic pail.
- Polyliner drum.
- Packing as recommended by manufacturer.

For low viscosity materials
- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

STORAGE REQUIREMENTS
- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Peak ppm</th>
<th>Peak mg/m³</th>
<th>TWA F/CC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>US ACGIH Threshold Limit Values (TLV)</td>
<td>manganese chloride ((Manganese and inorganic compounds, as Mn))</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TLV® Basis: CNS impair , See Notice of Intended Changes (NIC)</td>
</tr>
</tbody>
</table>

PERSONAL PROTECTION

EYE
- Safety glasses with side shields
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. [AS/NZS 1336 or national equivalent]

HANDS/FEET
- Wear chemical protective gloves, eg. PVC.
Wear safety footwear or safety gumboots, eg. Rubber

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

OTHER
- Overalls.
- Eyewash unit.
- Barrier cream.
- Skin cleansing cream.

ENGINEERING CONTROLS

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:
- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard “physically” away from the worker and ventilation that strategically “adds” and “removes” air in the work environment.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Mixes with water.

<table>
<thead>
<tr>
<th>State</th>
<th>DIVIDED SOLID</th>
<th>Molecular Weight</th>
<th>125.84</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Range (°F)</td>
<td>1202</td>
<td>Viscosity</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>2174</td>
<td>Solubility in water (g/L)</td>
<td>Miscible</td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>Not Applicable</td>
<td>pH (1% solution)</td>
<td>Not available.</td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>Not available.</td>
<td>pH (as supplied)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>Not available.</td>
<td>Vapor Pressure (mmHg)</td>
<td>9.751 @ 778 deg.C</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not applicable</td>
<td>Specific Gravity (water=1)</td>
<td>2.98 @ 25 deg.C</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not applicable</td>
<td>Relative Vapour Density (air=1)</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Not applicable.</td>
<td>Evaporation Rate</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

APPEARANCE

Cubic, deliquescent crystals. Soluble in alcohol. Solubility in water @ 25 deg.C: 72.3 g/100 cc., @ 100 deg.C: 123.8 g/100 cc. Insoluble in ether, ammonia.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

STORAGE INCOMPATIBILITY

- WARNING: Avoid or control reaction with peroxides. All transition metal peroxides should be considered as potentially explosive. For example transition metal complexes of alkyl hydroperoxides may decompose explosively.
- The π-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono-or poly-fluorobenzene show extreme sensitivity to heat and are explosive.
- Avoid reaction with borohydrides or cyanoborohydrides
- Metals and their oxides or salts may react violently with chlorine trifluoride and bromine trifluoride.
- These trifluorides are hypergolic oxidisers. They ignites on contact (without external source of heat or ignition) with recognised fuels - contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce ignition.
- The state of subdivision may affect the results.

Segregate from potassium, sodium and zinc.
For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

manganese chloride

TOXICITY AND IRRITATION
■ No significant acute toxicological data identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. This material and its container must be disposed of as hazardous waste. Avoid release to the environment.

Refer to special instructions/ safety data sheets.

Ecotoxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
<th>Bioaccumulation</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>manganese chloride</td>
<td>HIGH</td>
<td>No Data Available</td>
<td>LOW</td>
<td>HIGH</td>
</tr>
</tbody>
</table>

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions
All waste must be handled in accordance with local, state and federal regulations.
- Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.
Otherwise:
- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and MSDS and observe all notices pertaining to the product.
Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:
- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted.
- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Management Authority for disposal.
- Bury residue in an authorised landfill.
- Recycle containers if possible, or dispose of in an authorised landfill.

Section 14 - TRANSPORTATION INFORMATION

DOT:

<table>
<thead>
<tr>
<th>Symbols:</th>
<th>Hazard class or Division:</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>6.1</td>
</tr>
</tbody>
</table>
Identification Numbers: UN3288 PG: III
Label Codes: 6.1 Special provisions: IB8, IP3, T1, TP33
Packaging: Exceptions: 153 Quantity limitations: Passenger aircraft/rail: 100 kg
Quantity Limitations: Cargo aircraft only: 200 kg Vessel stowage: Location: A

Vessel stowage: Other: None

Hazardous materials descriptions and proper shipping names:
Toxic solid, inorganic, n.o.s.

Air Transport IATA:
ICAO/IATA Class: 6.1 ICAO/IATA Subrisk: None
UN/ID Number: 3288 Packing Group: III
Special provisions: A3
Cargo Only
Packing Instructions: 677 Maximum Qty/Pack: 200 kg
Passenger and Cargo
Packing Instructions: 670 Maximum Qty/Pack: 100 kg
Passenger and Cargo Limited Quantity
Packing Instructions: Y645 Maximum Qty/Pack: 10 kg

Shipping name: TOXIC SOLID, INORGANIC, N.O.S. (contains manganese chloride)

Maritime Transport IMDG:
IMDG Class: 6.1 IMDG Subrisk: None
UN Number: 3288 Packing Group: III
EMS Number: F-A, S-A Special provisions: 223 274
Limited Quantities: 5 kg Marine Pollutant: Yes

Shipping name: TOXIC SOLID, INORGANIC, N.O.S. (contains manganese chloride)

Section 15 - REGULATORY INFORMATION

manganese chloride (CAS: 7773-01-5) is found on the following regulatory lists;
LIMITED EVIDENCE

■ Inhalation may produce health damage

■ Cumulative effects may result following exposure

● (limited evidence)

■ Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

■ The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings.

■ For detailed advice on Personal Protective Equipment, refer to the following U.S. Regulations and Standards:

OSHA Standards - 29 CFR:
1910.132 - Personal Protective Equipment - General requirements
1910.133 - Eye and face protection
1910.134 - Respiratory Protection
1910.136 - Occupational foot protection
1910.138 - Hand Protection

Eye and face protection - ANSI Z87.1
Foot protection - ANSI Z41
Respirators must be NIOSH approved.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

www.Chemwatch.net

Issue Date: Apr-24-2009
Print Date: Mar-28-2012