Nifedipine

Material Safety Data Sheet

Hazard Alert Code
Key:

EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Nifedipine

STATEMENT OF HAZARDOUS NATURE

NFPA

Section 2 - HAZARDS IDENTIFICATION

PRODUCT USE
A vasodilator used in the treatment and prophylaxis of angina pectoris and in the treatment of hypertension. Although nifedipine possesses calcium-antagonist properties it does not produce therapeutic antiarrhythmic effects. Reported to act by reducing cardiac workload and myocardial oxygen demand and by reducing peripheral resistance and heart-load. Normally taken sub-lingually. May enhance the antihypertensive effects of beta-adrenergic blocking agents.

SYNONYMS
C17-H18-N2-O6, "3, 5-pyridinedicarboxylic acid, 1, 4-dihydro-2, 6-dimethyl-4-(2'-" nitrophenyl), "", 3, 5-pyridinedicarboxylic acid, 1, 4-dihydro-2, 6-dimethyl-4-(2'-nitrophenyl), "", "dimethyl ester", "1, 4-dihydro-2, 6-dimethyl-4-(2-nitrophenyl)-3, 5-pyridinedicarboxylic acid, "acid, dimethyl ester", "1, 4-dihydro-2, 6-dimethyl-4-(2-nitrophenyl)-3, 5-pyridinedicarboxylic acid, "acid, dimethyl ester", "1, 4-dihydro-2, 6-dimethyl-4-(2'-nitrophenyl)-3, 5-" pyridinedicarboxylate, "', 4-dihydroxy-2, 6-dimethyl-4-(2'-nitrophenyl)-3, 1'-" nitrophenyl)-3, 5-", pyridinedicarboxylate, "', 4-(2'-nitrophenyl)-2, 6-dimethyl-3, 5-dicarbomethoxy-1, 4-", dihydroprydine, "4-(2'-nitrophenyl)-2, 6-dimethyl-3, 5-dicarbomethoxy-1, 4-", dihydroprydine, Adalat, Adalate, Adapress, Aldipin, Alfadat, Anifed, Aprical, Bonacipid, BAY-1040, "BAY A-1040", Camont, Citidil, Coracten, Cordicant, Corinfar, Corotrend, Duranifen, Ecdopin, Fenindine, Hexadiat, Introcar, Kordafen, Nidedicor, Nifelat, Nifelan, Orix, Oxford, Pidilat, Procardin, Sepamit, Tibricol, Zeneris, "calcium channel blocker/ vasodilator", antihypertensive

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW
RISK
Harmful if swallowed.
May cause SENSITIZATION by skin contact.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- Large doses of calcium channel blocking agents may produce nausea, weakness, dizziness, drowsiness, confusion, slurred speech, a decrease in blood pressure along with reduced cardiac output; death may ensue.
- When given by mouth or by injection, in therapeutic doses, vasodilators may produce transient flushing of the face, a sensation of heat, a pounding in the head, peripheral oedema, headache, hypotension, palpitations, dizziness and fatigue. Most reactions are dose dependent and transient. High doses may cause flushing and dryness of the skin, skin lesions, abdominal cramps, diarrhoea, nausea, vomiting, malaise, anorexia, activation of peptic ulcer, jaundice and impairment of liver function, decrease in glucose tolerance, mild diabetes and hyperuricaemia. Most of these effects subside with withdrawal of the drug.

EYE
- Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

SKIN
- Skin contact is not thought to produce harmful health effects (as classified using animal models). Systemic harm, however, has been identified following exposure of animals by at least one other route and the material may still produce health damage following entry through wounds, lesions or abrasions. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
- The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified using animal models). Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS
- Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population.
- Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.
- Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray. Calcium channel blocking agents can cause heart irregular heart beat, high blood pressure, vomiting, diarrhea, headache, dermatitis, acne, itching and blood disorders such as anemia and loss of platelets. Widespread blood swellings and blood clots may occur.
- Exposure to small quantities may induce hypersensitivity reactions characterized by acute bronchoospasm, hives (urticaria), deep dermal wheals (angioneurotic edema), running nose (rhinitis) and blurred vision. Anaphylactic shock and skin rash (non-thrombocytopenic purpura) may occur. An individual may be predisposed to such anti-body mediated reaction if other chemical agents have caused prior sensitization (cross-sensitivity).

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

<table>
<thead>
<tr>
<th>Hazard Rating</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

NAME: nifedipine
CAS RN: 21829-25-4
%: >98

Section 4 - FIRST AID MEASURES

SWALLOWED
- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
- Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
- For advice, contact a Poisons Information Center or a doctor.
- Urgent hospital treatment is likely to be needed.
- If conscious, give water to drink.
INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

NOTE: Wear a protective glove when inducing vomiting by mechanical means.

In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.

If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.

If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

EYE

■ If this product comes in contact with the eyes:
 - Wash out immediately with fresh running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - If pain persists or recurs seek medical attention.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

■ If skin contact occurs:
 - Immediately remove all contaminated clothing, including footwear
 - Flush skin and hair with running water (and soap if available).
 - Seek medical attention in event of irritation.

INHALED

■ If dust is inhaled, remove from contaminated area.
 - Encourage patient to blow nose to ensure clear passage of breathing.
 - If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN

■ For nifedipine and is analogues:
 - In overdose by mouth the stomach should be emptied by aspiration and lavage.
 - Hypotension should be treated by placing the patient in the supine position with the feet raised; standard measures such as atropine for bradycardia, and noradrenaline for hypotension have been suggested.
 - Calcium gluconate may be of benefit.

Martindale.

The highly lipophilic characteristics, high protein binding and extensive volume of distribution of calcium channel blockers makes hemodialysis, diuresis, and hemoperfusion impractical. Calcium gluconate has been used successfully to reverse hypotension. In dog models relatively small amounts of calcium reverse negative inotropic effects, even when exacerbated by propranolol.

For significant overdose of calcium channel blockers:
 - patients should receive cardiac monitoring for 4-6 hours and an electrocardiogram (ECG).
 - patients with conduction effects or signs of myocardial depression should be admitted to a monitored bed.
 - Asymptomatic patients may then be discharged after appropriate counselling.
 - The usual therapeutic measures for hypotension and bradycardia (atropine, isoproterenol, pacings) are appropriate together with calcium infusions.
 - Other calcium channel blockers, digoxin, beta-blockers and Class I drugs should be avoided.

Ellenhorn, M.J., and Barceloux D.G.; Medical Toxicology - Diagnosis and Treatment of Human Poisoning. 1988.

Readily and almost completely absorbed from the gastrointestinal tract with a blood half-life reportedly 4 to 5 hours. Mainly excreted from the urine as the inactive metabolite.

SECTION 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG): Negligible
Upper Explosive Limit (%): Not available.
Specific Gravity (water=1): Not available
Lower Explosive Limit (%): Not available

EXTINGUISHING MEDIA

■ Foam.
■ Dry chemical powder.
■ BCF (where regulations permit).
■ Carbon dioxide.
■ Water spray or fog - Large fires only.

FIRE FIGHTING

■ Alert Emergency Responders and tell them location and nature of hazard.
■ Wear breathing apparatus plus protective gloves.
■ Prevent, by any means available, spillage from entering drains or water course.
■ Use water delivered as a fine spray to control fire and cool adjacent area.
■ DO NOT approach containers suspected to be hot.
■ Cool fire exposed containers with water spray from a protected location.
■ If safe to do so, remove containers from path of fire.
■ Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

■ Combustible solid which burns but propagates flame with difficulty.
■ Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive
mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.

- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes.

FIRE INCOMPATIBILITY

- Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:
Chemical goggles.

Gloves:

Respirator:
Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- Place in suitable containers for disposal.

MAJOR SPILLS

- Moderate hazard.
- CAUTION: Advise personnel in area.
- Alert Emergency Responders and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
Observe manufacturer's storing and handling recommendations.
Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.
Do NOT cut, drill, grind or weld such containers.
In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS
Glass container.
Polyethylene or polypropylene container.
Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS
Store in original containers.
Keep containers securely sealed.
Store in a cool, dry, well-ventilated area.
Store away from incompatible materials and foodstuff containers.
Protect containers against physical damage and check regularly for leaks.
Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>X</td>
<td>+</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

X: Must not be stored together
O: May be stored together with specific precautions
+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS
The following materials had no OELs on our records

MATERIAL DATA
NIFEDIPINE:
It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace. At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.
NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply. Airborne particulate or vapor must be kept to levels as low as is practicably achievable given access to modern engineering controls and monitoring hardware. Biologically active compounds may produce idiosyncratic effects which are entirely unpredictable on the basis of literature searches and prior clinical experience (both recent and past).

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE
When handling very small quantities of the material eye protection may not be required.
For laboratory, larger scale or bulk handling or where regular exposure in an occupational setting occurs:
• Chemical goggles
• Face shield. Full face shield may be required for supplementary but never for primary protection of eyes
• Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]

HANDS/FEET
NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Rubber gloves (nitrile or low-protein, powder-free latex). Employees allergic to latex gloves should use nitrile gloves in preference.
- Double gloving should be considered.
- PVC gloves.
- Protective shoe covers.
- Head covering.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluoroelastomer
- polyvinyl chloride

Gloves should be examined for wear and/or degradation constantly.

OTHER

- For quantities up to 500 grams a laboratory coat may be suitable.
- For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs.
- For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers.
- For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- Eye wash unit.
- Ensure there is ready access to an emergency shower.
- For Emergencies: Vinyl suit

- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory equipment. These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

<table>
<thead>
<tr>
<th>Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x PEL</td>
<td>P1</td>
<td>-</td>
<td>PAPR-P1</td>
</tr>
<tr>
<td></td>
<td>Air-line*</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>50 x PEL</td>
<td>Air-line**</td>
<td>P2</td>
<td>PAPR-P2</td>
</tr>
<tr>
<td>100 x PEL</td>
<td>-</td>
<td>P3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Air-line*</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>100+ x PEL</td>
<td>-</td>
<td>Air-line**</td>
<td>PAPR-P3</td>
</tr>
</tbody>
</table>

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.
Class 2 medium absorption capacity filters.
Class 3 high absorption capacity filters.
PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.
Type AX for use against low boiling point organic compounds (less than 65°C).
Type B for use against certain inorganic gases and other acid gases and vapors.
Type E for use against sulfur dioxide and other acid gases and vapors.
Type K for use against ammonia and organic ammonia derivatives.

Class P1 intended for use against environmentally generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.
Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.
Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face respirator.
pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS
- Enclosed local exhaust ventilation is required at points of dust, fume or vapor generation.
- HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapors.
- Barrier protection or laminar flow cabinets should be considered for laboratory scale handling.
- The need for respiratory protection should also be assessed where incidental or accidental exposure is anticipated: Dependent on levels of contamination, PAPR, full face air purifying devices with P2 or P3 filters or air supplied respirators should be evaluated.
- Fume-hoods and other open-face containment devices are acceptable when face velocities of at least 1 m/s (200 feet/minute) are achieved. Partitions, barriers, and other partial containment technologies are required to prevent migration of the material to uncontrolled areas. For non-routine emergencies maximum local and general exhaust are necessary. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

<table>
<thead>
<tr>
<th>Type of Contaminant</th>
<th>Air Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent, vapors, etc. evaporating from tank (in still air)</td>
<td>0.25-0.5 m/s (50-100 ft/min.)</td>
</tr>
<tr>
<td>aerosols, fumes from pouring operations, intermittent container filling, low speed conveyor transfers (released at low velocity into zone of active generation)</td>
<td>0.5-1 m/s (100-200 ft/min.)</td>
</tr>
<tr>
<td>direct spray, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>1-2.5 m/s (200-500 ft/min.)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:
- Lower end of the range
 - Room air currents minimal or favourable to capture
 - Contaminants of low toxicity or of nuisance value only.
 - Intermittent, low production.
 - Large hood or large air mass in motion
- Upper end of the range
 - Disturbing room air currents
 - Contaminants of high toxicity
 - High production, heavy use
 - Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 ft/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES
- Solid.
- Does not mix with water.

<table>
<thead>
<tr>
<th>State</th>
<th>Divided solid</th>
<th>Molecular Weight</th>
<th>346.37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Range (°F)</td>
<td>341.6- 345.2</td>
<td>Viscosity</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>Not available</td>
<td>Solubility in water (g/L)</td>
<td>Partly miscible</td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>Not available</td>
<td>pH (1% solution)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>Not available</td>
<td>pH (as supplied)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>Not available</td>
<td>Vapour Pressure (mmHg)</td>
<td>Negligible</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available.</td>
<td>Specific Gravity (water=1)</td>
<td>Not available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
<td>Relative Vapor Density (air=1) >1</td>
<td></td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Negligible</td>
<td>Evaporation Rate</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

APPEARANCE
- Yellow, odourless crystalline powder; does not mix well with water. Soluble in acetone, chloroform. Very light-sensitive in solution.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY
- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY
- Nitrophensols are:
 - combustible solids which may form explosive mixtures with air when finely divided
 - strong oxidisers which react violently with reducing agents
 - reactive with combustible, organic and other easily oxidisable materials
 - thermally unstable burning in the absence of air causing fast pressure rises; closed containers may explode
 - able to form shock-sensitive explosive mixtures with chlorine trifluoride
incompatible with strong acids, caustics, aliphatic amines, amides, diethylamine, potassium hydride, potassium hydroxide
Avoid reaction with oxidizing agents.
For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

TOXICITY AND IRRITATION

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (woman) TDL0: 11.2 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Oral (man) TDL0: 8.57 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Oral (man) TDL0: 0.143 mg/kg/1d</td>
<td></td>
</tr>
<tr>
<td>Oral (man) TDL0: 0.714 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Oral (rat) LD50: 1022 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Intraperitoneal (rat) LD50: 230 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Subcutaneous (rat) LD50: >10000 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Intravenous (rat) LD50: 6 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Oral (mouse) LD50: 310 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Intraperitoneal (mouse) LD50: 185 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Subcutaneous (mouse) LD50: >10000 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Intravenous (mouse) LD50: 4.32 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Oral (cat) LD50: 100 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Intraperitoneal (cat) LD50: 190 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Oral (rabbit) LD50: 504 mg/kg</td>
<td></td>
</tr>
</tbody>
</table>

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's edema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitization potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitizing substance which is widely distributed can be a more important allergen than one with stronger sensitizing potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Oral (man) TDL0: 105 mg/kg/26w - I Nil reported
Oral (woman) TDL0: 2.4 mg/kg/3d - I
Oral (man) TDL0: 31 mg/kg/11w - I
Oral (man) TDL0: 11.43 mg/kg/2d - I
Oral (woman) TDL0: 0.6 mg/kg/45m - I
Oral (child) 70 mg/kg
Olfaction effects, toxic psychosis, lowered blood pressure, respiratory depression, changes in blood circulation in brain, headache, nausea/vomiting, hallucinations, change in cardiac rate, cardiomyopathy, hyperglycaemia, change in motor activity, dyspnea, respiratory stimulation, somnolence, convulsions, ataxia, body temperature decrease, changes in liver weight, increased urine volume, changes in potassium, changes in heart weight, maternal effects, specific developmental abnormalities (musculoskeletal system, cardiovascular), effects on newborn, foetotoxicity recorded.

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:
NIFEDIPINE:
■ DO NOT discharge into sewer or waterways.

Ecotoxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
<th>Bioaccumulation</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>nifedipine</td>
<td>HIGH</td>
<td>LOW</td>
<td>MED</td>
<td></td>
</tr>
</tbody>
</table>

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions
All waste must be handled in accordance with local, state and federal regulations.
Puncture containers to prevent re-use and bury at an authorized landfill.
Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.
A Hierarchy of Controls seems to be common - the user should investigate:
■ Reduction
■ Reuse
Recycling
Disposal (if all else fails)
This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

nifedipine (CAS: 21829-25-4, 101539-70-2, 101554-38-5) is found on the following regulatory lists;

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE
- Cumulative effects may result following exposure*.
* (limited evidence).

Ingredients with multiple CAS Nos

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>CAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>nifedipine</td>
<td>21829-25-4, 101539-70-2, 101554-38-5</td>
</tr>
</tbody>
</table>

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.
- A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Mar-24-2009
Print Date: Apr-21-2010