nucleoporin p62 siRNA (h): sc-36107

The Power to Question

BACKGROUND

Protein transport across the nucleus is a selective, multi-step process involving several cytoplasmic factors. Proteins must be recognized as import substrates, dock at the nuclear pore complex and translocate across the nuclear envelope in an ATP-dependent fashion. Two cytosolic factors centrally involved in the recognition and docking process are the karyopherin α and karyopherin β proteins. The karyopherin holoenzyme is a heterodimer of α and β subunits. Karyopherin α functions in the recognition and targeting of substrates destined for nuclear import, while karyopherin β serves as an adaptor, tethering the karyopherin α substrate complex to docking proteins (termed nucleoporins) on the nuclear envelope. p62 glycoprotein is one such nucleoporin, and is not only involved in the nuclear import of proteins, but also the export of nascent mRNA strands. An additional protein, NTF2 (nuclear transport factor 2), interacts with nucleoporin p62 as a homodimer and may be an obligate component of functional p62.

REFERENCES

- 1. Moroianu, J., et al. 1995. Previously identified protein of uncertain function is karyopherin α and together with karyopherin β docks import substrate at nuclear pore complexes. Proc. Natl. Acad. Sci. USA 92: 2008-2011.
- Dargemont, C., et al. 1995. Direct interaction of nucleoporin p62 with mRNA during its export from the nucleus. J. Cell Sci. 108: 257-263.
- Buss, F., et al. 1995. Macromolecular interactions in the nucleoporin p62 complex of rat nuclear pores: binding of nucleoporin p54 to the ROD domain of p62. J. Cell Biol. 128: 251-261.

CHROMOSOMAL LOCATION

Genetic locus: NUP62 (human) mapping to 19q13.33.

PRODUCT

nucleoporin p62 siRNA (h) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see nucleoporin p62 shRNA Plasmid (h): sc-36107-SH and nucleoporin p62 shRNA (h) Lentiviral Particles: sc-36107-V as alternate gene silencing products.

For independent verification of nucleoporin p62 (h) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-36107A, sc-36107B and sc-36107C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20 $^{\circ}$ C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20 $^{\circ}$ C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

nucleoporin p62 siRNA (h) is recommended for the inhibition of nucleoporin p62 expression in human cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

GENE EXPRESSION MONITORING

nucleoporin p62 (E-4): sc-48389 is recommended as a control antibody for monitoring of nucleoporin p62 gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor nucleoporin p62 gene expression knockdown using RT-PCR Primer: nucleoporin p62 (h)-PR: sc-36107-PR (20 μ I, 477 bp). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

SELECT PRODUCT CITATIONS

- Kinoshita, Y., et al. 2012. Alterations in nuclear pore architecture allow cancer cell entry into or exit from drug-resistant dormancy. Am. J. Pathol. 180: 375-389.
- Kinoshita, Y., et al. 2012. Nuclear distributions of NUP62 and Nup214 suggest architectural diversity and spatial patterning among nuclear pore complexes. PLoS ONE 7: e36137.
- 3. Funasaka, T., et al. 2013. Nucleoporin Nup98 mediates galectin-3 nuclear-cytoplasmic trafficking. Biochem. Biophys. Res. Commun. 434: 155-161.
- 4. Bishop, P.J., et al. 2020. Changes in Nup62 content affect contact-induced differentiation of cultured myoblasts. Differentiation 114: 27-35.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com