SANTA CRUZ BIOTECHNOLOGY, INC.

PDGFR-β siRNA (m): sc-36200

BACKGROUND

Platelet-derived growth factor (PDGF) is a mitogen for mesenchyme- and gliaderived cells. PDGF consists of two chains, A and B, which dimerize to form functionally distinct isoforms, PDGF-AA, PDGF-AB and PDGF-BB. These three isoforms bind with different affinities to two receptor types, PDGFR- α and - β , which are endowed with protein tyrosine kinase domains. PDGFR- α can bind to both A and B subunits of PDGF, while PDGFR- β can only bind the B subunit. Ligand binding promotes either homo- or heterodimerization of the PDGF receptors in a specific manner. PDGF-AA induces the dimerization of two α receptors, PDGF-AB induces dimerization of $\alpha\alpha$ and $\alpha\beta$ and PDGF-BB induces the formation of three types of dimers, $\alpha\alpha$, $\alpha\beta$ and $\beta\beta$. Translocation of the PDGFR- β gene with the Tel gene is linked to chronic myelomonocytic leukemia (CMML), a myelodysplastic syndrome, and demonstrates the oncogenic potential of the PDGF receptors.

REFERENCES

- 1. Ross, R., et al. 1986. The biology of platelet-derived growth factor. Cell 46: 155-169.
- 2. Hart, C.E., et al. 1988. Two classes of PDGF receptor recognize different isoforms of PDGF. Science 240: 1529-1531.
- 3. Heldin, C.H., et al. 1989. Dimerization of B-type platelet-derived growth factor receptors occurs after ligand binding and is closely associated with receptor kinase activation. J. Biol. Chem. 264: 8905-8912.
- Thornton, D.E., et al. 1991. Characterization of the 5q-breakpoint in an acute nonlymphocytic leukemia patient using pulsed-field gel electrophoresis. Am. J. Med. Genet. 41: 557-565.

CHROMOSOMAL LOCATION

Genetic locus: Pdgfrb (mouse) mapping to 18 E1.

PRODUCT

PDGFR- β siRNA (m) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see PDGFR- β shRNA Plasmid (m): sc-36200-SH and PDGFR- β shRNA (m) Lentiviral Particles: sc-36200-V as alternate gene silencing products.

For independent verification of PDGFR- β (m) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-36200A, sc-36200B and sc-36200C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

PDGFR- β siRNA (m) is recommended for the inhibition of PDGFR- β expression in mouse cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 μ M in 66 μ l. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

GENE EXPRESSION MONITORING

PDGFR- β (D-6): sc-374573 is recommended as a control antibody for monitoring of PDGFR- β gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-IgG κ BP-HRP: sc-516102 or m-IgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-IgG κ BP-FITC: sc-516140 or m-IgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor PDGFR- β gene expression knockdown using RT-PCR Primer: PDGFR- β (m)-PR: sc-36200-PR (20 μ I). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

SELECT PRODUCT CITATIONS

- 1. Cinq-Frais, C., et al. 2013. A signaling cascade mediated by ceramide, Src and PDGFR- β coordinates the activation of the redox-sensitive neutral sphingomyelinase-2 and sphingosine kinase-1. Biochim. Biophys. Acta 1831: 1344-1356.
- Maity, S., et al. 2020. TGFβ acts through PDGFR-β to activate mTORC1 via the Akt/PRAS40 axis and causes glomerular mesangial cell hypertrophy and matrix protein expression. J. Biol. Chem. 295: 14262-14278.
- Hamid, T., et al. 2022. Cardiac mesenchymal stem cells promote fibrosis and remodeling in heart failure: role of PDGF signaling. JACC Basic Transl. Sci. 7: 465-483.

RESEARCH USE

For research use only, not for use in diagnostic procedures.