
SANTA CRUZ BIOTECHNOLOGY, INC.

p67-phox (D-6): sc-374510

BACKGROUND

The heredity disease chronic granulomatous disease (CGF) has been linked to mutations in p47-phox and p67-phox. The cytosolic proteins p47-phox and p67-phox, also designated neutrophil cytosol factor 1 (NCF1) and NCF2, respectively, are required for activation of the superoxide-producing NADPH oxidase in neutrophils and other phagocytic cells. During activation of the NADPH oxidase, p47-phox and p67-phox migrate to the plasma membrane where they associate with cytochrome b558 and the small G protein Rac to form the functional enzyme complex. Both p47-phox and p67-phox contain two Src homology 3 (SH3) domains. The C-terminal SH3 domain of p67-phox has been shown to interact with the proline rich domain of p47-phox, suggesting that p47-phox may faciliate the transport of p67-phox to the membrane.

CHROMOSOMAL LOCATION

Genetic locus: NCF2 (human) mapping to 1q25.3; Ncf2 (mouse) mapping to 1 G3.

SOURCE

p67-phox (D-6) is a mouse monoclonal antibody raised against amino acids 1-300 of p67-phox of human origin.

PRODUCT

Each vial contains 200 μg IgG1 kappa light chain in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

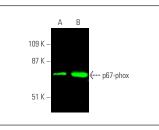
p67-phox (D-6) is available conjugated to agarose (sc-374510 AC), 500 μ g/ 0.25 ml agarose in 1 ml, for IP; to HRP (sc-374510 HRP), 200 μ g/ml, for WB, IHC(P) and ELISA; to either phycoerythrin (sc-374510 PE), fluorescein (sc-374510 FITC), Alexa Fluor[®] 488 (sc-374510 AF488), Alexa Fluor[®] 546 (sc-374510 AF546), Alexa Fluor[®] 594 (sc-374510 AF594) or Alexa Fluor[®] 647 (sc-374510 AF647), 200 μ g/ml, for WB (RGB), IF, IHC(P) and FCM; and to either Alexa Fluor[®] 680 (sc-374510 AF680) or Alexa Fluor[®] 790 (sc-374510 AF790), 200 μ g/ml, for Near-Infrared (NIR) WB, IF and FCM.

Alexa Fluor® is a trademark of Molecular Probes, Inc., Oregon, USA

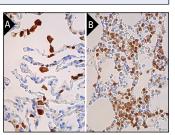
APPLICATIONS

p67-phox (D-6) is recommended for detection of p67-phox of mouse, rat and human origin by Western Blotting (starting dilution 1:100, dilution range 1:100-1:1000), immunoprecipitation [1-2 μ g per 100-500 μ g of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500), immunohistochemistry (including paraffin-embedded sections) (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for p67-phox siRNA (h): sc-36163, p67-phox siRNA (m): sc-36164, p67-phox shRNA Plasmid (h): sc-36163-SH, p67-phox shRNA Plasmid (m): sc-36164-SH, p67-phox shRNA (h) Lentiviral Particles: sc-36163-V and p67-phox shRNA (m) Lentiviral Particles: sc-36164-V.


Molecular Weight of p67-phox: 67 kDa.

Positive Controls: THP-1 cell lysate: sc-2238, RAW 264.7 whole cell lysate: sc-2211 or HL-60 whole cell lysate: sc-2209.


STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

DATA

p67-phox (D-6): sc-374510. Near-infrared western blot analysis of p67-phox expression in THP-1 (A) and DMSO-treated HL-60 (B) whole cell lysates. Blocked with UltraCruz[®] Blocking Reagent: sc-516214. Detection reagent used: m-IgG\kappa BP-CFL 680: sc-516180.

p67-phox (D-6): sc-374510. Immunoperoxidase staining of formalin fixed, parafin-embedded human lung tissue showing cytoplasmic staining of macrophages (A). Immunoperoxidase staining of formalin fixed, paraffinembedded human bone marrow tissue showing cytoplasmic staining of subset of hematopoietic cells (B).

SELECT PRODUCT CITATIONS

- Wada, T., et al. 2013. Rapid detection of intracellular p47-phox and p67-phox by flow cytometry; useful screening tests for chronic granulomatous disease. J. Clin. Immunol. 33: 857-864.
- Lin, H.T., et al. 2015. An assessment of the effects of ectopic gp91phox expression in XCGD iPSC-derived neutrophils. Mol. Ther. Methods Clin. Dev. 2: 15046.
- Kulkarni, M., et al. 2016. Clinical, immunological, and molecular findings of patients with p47-phox defect chronic granulomatous disease (CGD) in Indian families. J. Clin. Immunol. 36: 774-784.
- Yan, J., et al. 2017. An inflammatory bowel disease-risk variant in INAVA decreases pattern recognition receptor-induced outcomes. J. Clin. Invest. 127: 2192-2205.
- Tsuboi, T., et al. 2018. Administration of L-arginine plus L-citrulline or L-citrulline alone successfully retarded endothelial senescence. PLoS ONE 13: e0192252.
- Diebold, B.A., et al. 2019. Guidelines for the detection of NADPH oxidases by immunoblot and RT-qPCR. Methods Mol. Biol. 1982: 191-229.
- 7. Sui, Y., et al. 2019. NADPH oxidase is a primary target for antioxidant effects by inorganic nitrite in lipopolysaccharide-induced oxidative stress in mice and in macrophage cells. Nitric Oxide 89: 46-53.
- Blancas-Galicia, L., et al. 2020. Genetic, immunological, and clinical features of the first Mexican cohort of patients with chronic granulomatous disease. J. Clin. Immunol. 40: 475-493.
- Hu, D., et al. 2020. Age-related changes in mineralocorticoid receptors in rat hearts. Mol. Med. Rep. 22: 1859-1867.

RESEARCH USE

For research use only, not for use in diagnostic procedures.